This study was to explore a better three-dimensional (3-D) culture method of chondrocyte. The interpenetrating network (IPN) gel beads were developed through a photo-cross linking reaction with mixed barium ions and calcium ions at the ratio of 5:5 with the methacrylic alginate (MA), which was a chemically conjugated alginate with methacrylic groups. The second generation of primary cartilage cells was encapsulated in the MA gel beads for three weeks. In the designated timing, HE stain, Alamar blue method and Scanning electron microscopic were used to determine the cartilage cells growth, proliferation and the cell distribution in the scaffolds, respectively. The expression of typeⅡcollagen was investigated by an immunohistochemistry assay and the glycosaminoglycan content was quantitatively evaluated with the spectrophotometry of 1, 9 dimethylene blue assay. Compared to the alginate control group, the deposition of glycosaminoglycan was significantly upregulated in IPN-MA gel beads with higher cell proliferation. The secretion of extracellular matrix and proliferation of chondrocyte in methacrylic alginate gel beads were higher than that in Alginate beads. Cells were able to attach, to grow well on the scaffolds under scanning electron microscopy. The result of immunohistochemistry staining of collagen typeⅡwas positive, confirming the maintenance of chondrocyte phenotype in methacrylic alginate gel beads. This study shows a great potential for three-dimensional culture of cartilage.
ObjectiveTo explore a new method of developing a pre-vascularized cell sheets. MethodsBone marrow mesenchymal stem cells (BMSCs) from 3-week-old Japanese white rabbits were harvested and cultured. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were added into the culture medium to differentiate into endothelial like cells (ECs) from BMSCs (experimental group), and non-induced cells served as the control group. The cell morphology was observed; and the von Willebrand factor (vWF) and CD31 immunofluorescent staining was used to identify the induced BMSCs. The 2nd generation BMSCs were seeded on a cell culture dish at a cell density of 9×104cells/cm2 and cultured for 14 days to form a thick cell sheet, and ECs from BMSCs were then seeded on the BMSCs sheet at a cell density of 5×104 cells/cm2 to develop pre-vascularized cell sheets and cultured for 3, 7, and 14 days (group A); non-induced BMSCs sheet and only ECs from BMSCs were used as group B and group C, respectively. The CD31 immunofluorescent staining and histological analysis were performed to evaluate the pre-vascularized cell sheet. ResultsBMSCs changed from long fusiform to cobblestone-like morphology after induced by VEGF and bFGF. The expressions of CD31 and vWF were positive in experimental group, but were negative in control group, which suggested that BMSCs have the ability to differentiate into ECs under this condition. After the ECs were seeded on the BMSCs sheet, the ECs migrated and rearranged; intracellular vacuoles and networks were observed. Furthermore, immunofluorescent staining for CD31 also revealed a developing process of tube formation after the ECs were seeded on the BMSCs sheet. The histological evaluations indicated the microvessel lumen formed. However, no similar change was observed in groups B and C. ConclusionBMSCs have the ability to differentiate into ECs after induced by VEGF and bFGF. ECs from BMSCs can develop into vascular network constructs when seeded on the BMSCs sheet, which provides a new method for engineering pre-vascularized tissue construction.