In order to realize brain-computer interface (BCI), optimal features of single trail motor imagery electroencephalogram (EEG) were extracted and classified. Mu rhythm of EEG was obtained by preprocessing, and the features were optimized by spatial filtering, which are estimated from a set of data by method of common spatial pattern. Classification decision can be made by Fisher criterion, and classification performance can be evaluated by cross validation and receiver operating characteristic (ROC) curve. Optimal feature dimension determination projected by spatial filter was discussed deeply in cross-validation way. The experimental results show that the high discriminate accuracy can be guaranteed, meanwhile the program running speed is improved. Motor imagery intention classification based on optimized EEG feature provides difference of states and simplifies the recognition processing, which offers a new method for the research of intention recognition.
This paper aims to realize the decoding of single trial motor imagery electroencephalogram (EEG) signal by extracting and classifying the optimized features of EEG signal. In the classification and recognition of multi-channel EEG signals, there is often a lack of effective feature selection strategies in the selection of the data of each channel and the dimension of spatial filters. In view of this problem, a method combining sparse idea and greedy search (GS) was proposed to improve the feature extraction of common spatial pattern (CSP). The improved common spatial pattern could effectively overcome the problem of repeated selection of feature patterns in the feature vector space extracted by the traditional method, and make the extracted features have more obvious characteristic differences. Then the extracted features were classified by Fisher linear discriminant analysis (FLDA). The experimental results showed that the classification accuracy obtained by proposed method was 19% higher on average than that of traditional common spatial pattern. And high classification accuracy could be obtained by selecting feature set with small size. The research results obtained in the feature extraction of EEG signals lay the foundation for the realization of motor imagery EEG decoding.