west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Fetal electrocardiogram" 2 results
  • Fetal electrocardiogram signal extraction and analysis method combining fast independent component analysis algorithm and convolutional neural network

    Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.

    Release date: Export PDF Favorites Scan
  • Fetal electrocardiogram signal extraction based on multi-scale residual shrinkage U-Net

    In the extraction of fetal electrocardiogram (ECG) signal, due to the unicity of the scale of the U-Net same-level convolution encoder, the size and shape difference of the ECG characteristic wave between mother and fetus are ignored, and the time information of ECG signals is not used in the threshold learning process of the encoder’s residual shrinkage module. In this paper, a method of extracting fetal ECG signal based on multi-scale residual shrinkage U-Net model is proposed. First, the Inception and time domain attention were introduced into the residual shrinkage module to enhance the multi-scale feature extraction ability of the same level convolution encoder and the utilization of the time domain information of fetal ECG signal. In order to maintain more local details of ECG waveform, the maximum pooling in U-Net was replaced by Softpool. Finally, the decoder composed of the residual module and up-sampling gradually generated fetal ECG signals. In this paper, clinical ECG signals were used for experiments. The final results showed that compared with other fetal ECG extraction algorithms, the method proposed in this paper could extract clearer fetal ECG signals. The sensitivity, positive predictive value, and F1 scores in the 2013 competition data set reached 93.33%, 99.36%, and 96.09%, respectively, indicating that this method can effectively extract fetal ECG signals and has certain application values for perinatal fetal health monitoring.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content