west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "GAO Shuang" 2 results
  • miR-34a mediates oxaliplatin resistance of colon cancer cells by inhibiting autophagy via transforming growth factor-β/Smad4 pathway

    Objective To investigate whether miRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colon cancer cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway. Methods miR-34a expression levels were detected in colon cancer tissues and colon cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Computational search, functional luciferase assay, and Western blotting method were used to demonstrate the downstream target of miR-34a in colon cancer cells. Cell viability was measured with cell counting kit-8. Apoptosis and macroautophagy of colon cancer cells were analyzed by flow cytometry and transmission electron microscopy, and expressions of Beclin1 and LC3Ⅱ protein were detected by Western blotting method. Results Expression of miR-34a was significantly reduced while expressions of TGF-β and Smad4 mRNA were increased in colon cancer patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a expression levels and increased TGF-β and Smad4 expression levels in both parental cells and the OXA-resistant colon cancer cells. Activation of macroautophagy contributed to OXA resistance in colon cancer cells. Expression levels of Smad4 and miR-34a in colon cancer patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in colon cancer cells. Conclusion miR-34a mediates OXA resistance of colon cancer by inhibiting autophagy via the TGF-β/Smad4 pathway.

    Release date:2018-06-15 10:49 Export PDF Favorites Scan
  • Study on the preparation of polycaprolactone/typeⅠcollagen tissue engineered meniscus scaffold by three-dimensional printing and its physiochemical properties

    ObjectiveTo manufacture a polycaprolactone (PCL)/type Ⅰ collagen (COL Ⅰ) tissue engineered meniscus scaffold (hereinafter referred to as PCL/COL Ⅰ meniscus scaffold) by three-dimensional (3D) printing with low temperature deposition technique and to study its physicochemical properties.MethodsFirst, the 15% PCL/4% COLⅠ composite solution and 15% PCL simple solution were prepared. Then, 15% PCL/4% COL Ⅰmeniscus scaffold and 15% PCL meniscal scaffold were prepared by using 3D printing with low temperature deposition techniques. The morphology and microstructure of the scaffolds were observed by gross observation and scanning electron microscope. The compression modulus and tensile modulus of the scaffolds were measured by biomechanical test. The components of the scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR). The contact angle of the scaffold surface was measured. The meniscus cells of rabbits were cultured with the two scaffold extracts and scaffolds, respectively. After cultured, the cell proliferations were detected by cell counting kit 8 (CCK-8), and the normal cultured cells were used as controls. Cell adhesion and growth of scaffold-cell complex were observed by scanning electron microscope.ResultsAccording to the gross and scanning electron microscope observations, two scaffolds had orientated 3D microstructures and pores, but the surface of the PCL/COLⅠ meniscus scaffold was rougher than the PCL meniscus scaffold. Biomechanical analysis showed that the tensile modulus and compression modulus of the PCL/COL Ⅰ meniscus scaffold were not significantly different from those of the PCL meniscus scaffold (P>0.05). FTIR analysis results showed that COL Ⅰ and PCL were successful mixed in PCL/ COL Ⅰ meniscus scaffolds. The contact angle of PCL/COLⅠ meniscus scaffold [(83.19±7.49)°] was significantly lower than that of PCL meniscus scaffold [(111.13±5.70)°] (t=6.638, P=0.000). The results of the CCK-8 assay indicated that with time, the number of cells cultured in two scaffold extracts showed an increasing trend, and there was no significant difference when compared with the control group (P>0.05). Scanning electron microscope observation showed that the cells attached on the PCL/ COL Ⅰ meniscus scaffold more than that on the PCL scaffold.ConclusionPCL/COLⅠmeniscus scaffolds are prepared by 3D printing with low temperature deposition technique, which has excellent physicochemical properties without cytotoxicity. PCL/COLⅠmeniscus scaffold is expected to be used as the material for meniscus tissue engineering.

    Release date:2018-09-03 10:13 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content