west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "GUO Shijie" 4 results
  • Unconstrained detection of ballistocardiogram and heart rate based on vibration acceleration

    The requirement for unconstrained monitoring of heartbeat during sleep is increasing, but the current detection devices can not meet the requirements of convenience and accuracy. This study designed an unconstrained ballistocardiogram (BCG) detection system using acceleration sensor and developed a heart rate extraction algorithm. BCG is a directional signal which is stronger and less affected by respiratory movements along spine direction than in other directions. In order to measure the BCG signal along spine direction during sleep, a 3-axis acceleration sensor was fixed on the bed to collect the vibration signals caused by heartbeat. An approximate frequency range was firstly assumed by frequency analysis to the BCG signals and segmental filtering was conducted to the original vibration signals within the frequency range. Secondly, to identify the true BCG waveform, the accurate frequency band was obtained by comparison with the theoretical waveform. The J waves were detected by BCG energy waveform and an adaptive threshold method was proposed to extract heart rates by using the information of both amplitude and period. The accuracy and robustness of the BCG detection system proposed and the algorithm developed in this study were confirmed by comparison with electrocardiogram (ECG). The test results of 30 subjects showed a high average accuracy of 99.21% to demonstrate the feasibility of the unconstrained BCG detection method based on vibration acceleration.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
  • Research on injection flow velocity planning method for embolic agent injection system

    Interventional embolization therapy is widely used for procedures such as targeted tumour therapy, anti-organ hyperactivity and haemostasis. During embolic agent injection, doctors need to work under X-ray irradiation environment. Moreover, embolic agent injection is largely dependent on doctors’ experience and feelings, and over-injection of embolic agent can lead to reflux, causing ectopic embolism and serious complications. As an effective way to reduce radiation exposure and improve the success rate of interventional embolization therapy, embolic agent injection robot is highly anticipated, but how to decide the injection flow velocity of embolic agent is a problem that remains to be solved. On the basis of fluid dynamics simulation and experiment, we established an arterial pressure-injection flow velocity boundary curve model that can avoid reflux, which provides a design basis for the control of embolic agent injection system. An in vitro experimental platform for injection system was built and validation experiments were conducted. The results showed that the embolic agent injection flow speed curve designed under the guidance of the critical flow speed curve model of reflux could effectively avoid the embolic agent reflux and shorten the embolic agent injection time. Exceeding the flow speed limit of the model would lead to the risk of embolization of normal blood vessels. This paper confirms the validity of designing the embolic agent injection flow speed based on the critical flow speed curve model of reflux, which can achieve rapid injection of embolic agent while avoiding reflux, and provide a basis for the design of the embolic agent injection robot.

    Release date: Export PDF Favorites Scan
  • Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation

    By analyzing the physiological structure and motion characteristics of human ankle joint, a four degree of freedom generalized spherical parallel mechanism is proposed to meet the needs of ankle rehabilitation. Using the spiral theory to analyze the motion characteristics of the mechanism and based on the method of describing the position with spherical coordinates and the posture with Euler Angle, the inverse solution of the closed vector equation of mechanism position is established. The workspace of mechanism is analyzed according to the constraint conditions of inverse solution. The workspace of the moving spherical center of the mechanism is used to match the movement space of the tibiotalar joint, and the workspace of the dynamic platform is used to match the movement space of subtalar joint. Genetic algorithm is used to optimize the key scale parameters of the mechanism. The results show that the workspace of the generalized spherical parallel mechanism can satisfy the actual movement space of human ankle joint rehabilitation. The results of this paper can provide theoretical basis and experimental reference for the design of ankle joint rehabilitation robot with high matching degree.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Modeling and comfort analysis of arrayed air cushion mattress for pressure ulcer prevention and assisted repositioning

    Assisting immobile individuals with regular repositioning to adjust pressure distribution on key prominences such as the back and buttocks is the most effective measure for preventing pressure ulcers. However, compared to active self-repositioning, passive assisted repositioning results in distinct variations in force distribution on different body parts. This incongruity can affect the comfort of repositioning and potentially lead to a risk of secondary injury, for certain trauma or critically ill patients. Therefore, it is of considerable practical importance to study the passive turning comfort and the optimal turning strategy. Initially, in this study, the load-bearing characteristics of various joints during passive repositioning were examined, and a wedge-shaped airbag configuration was proposed. The airbags coupled layout on the mattress was equivalently represented as a spring-damping system, with essential model parameters determined using experimental techniques. Subsequently, different assisted repositioning strategies were devised by adjusting force application positions and sequences. A human-mattress force-coupled simulation model was developed based on rigid human body structure and equivalent flexible springs. This model provided the force distribution across the primary pressure points on the human body. Finally, assisted repositioning experiments were conducted with 15 participants. The passive repositioning effectiveness and pressure redistribution was validated based on the simulation results, experimental data, and questionnaire responses. Furthermore, the mechanical factors influencing comfort during passive assisted repositioning were elucidated, providing a theoretical foundation for subsequent mattress design and optimization of repositioning strategies.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content