Objective To study the adenovirus-mediated human bone morphogenetic protein-2 gene (Ad-hBMP-2)transferred to the intervertebral disc cells of the New Zealand rabbit in vitro. Methods The cells of New Zealand white rabbitswere isolated from their lumbar discs. The cells were grown in the monolayer and treated with an adenovirus encoding the LacZ gene (Ad-LacZ) and Ad-hBMP-2 (50,100, 150 MOI,multiplicity of infection) in the Dulbecco’s Modified Eagle Medium and the Ham’s F-12 Medium in vitro. Three days after the Ad-hBMP-2 treatment,the expression of hBMP-2 in the cells that had been infected by different dosesof MOI was determined by immunofluorescence and the Western blot analysis, and the expression was determined in the cells with the Ad-LacZ treatment in a dose of 150 MOI. Six days after the Ad-hBMP-2 treatment, mRNA was extracted for the reverse transcription polymerase chain reaction (RT-PCR) and the difference was detected between the control group and the culture group that was treated withAd-hBMP-2 in doses of 50, 100 and 150 MOI so that the expressions of aggrecan and collagen ⅡmRNA could be observed. Results The expression of hBMP-2 in the cells was gradually increased after the transfection in an increasing dose, which was observed by immunofluorescence and the Western blot analysis. At 6 days the aggrecan and collagen type Ⅱ mRNA expressions were up-regulated by Ad-hBMP-2 after the transfection at an increasing viral concentration in the dosedependent manner. Conclusion The results show that Ad-hBMP-2 can transfect the rabbit intervertebral disc cells in vitro with a high efficiency rate and the expression of hBMP-2 after theinfection is dose-dependent in the manner. AdhBMP-2 after transfection can up-regulate the expression of aggrecan and collagen Ⅱ mRNA at an increasing viral concentration.
Objective To construct the recombined DNA pcDNA3.1-hBMP-2 and transfect into human marrow stromal stem cells (MSCs) in vitro, and to explore theeffects of transfection on cellular proliferation and expression of vascular endothelial growth factor (VEGF). Methods The expression of human bone morphogenetic protein 2(hBMP-2) in these cells after transfection was determined by in situ hybridization and immunohistochemical analysis and Western blot analysis. The changes of cell proliferation were observed by flow cytometry. The effects of BMP-2 gene transfection on expression of VEGF in the cells were analyzed by in situ hybridization of VEGF cDNA probe. Results Stable expressionof hBMP-2 in pcDNA3.1-hBMP-2 transfected MSCs was confirmed in the levels of mRNA and protein.Cellular proportion in S period increased, which indicated that the synthesis of cell DNA increased. The expression of VEGF in the cells increased obviously. Conclusion With the help of lipofectamine, the pcDNA3.1-hBMP-2 were transfected into human MSCs successfully. hBMP-2 plays an important role in promoting cellular proliferation and vascular generation during bone repair.
【Abstract】 Objective To review the research progress of possible mechanism of indoleamine 2, 3-dioxygenase(IDO) in immunological regulation and function of transplantation immunity. Methods The advances in the IDO location, immunological regulatory mechanism and function of transplantation immunity were introduced based on the recent related l iterature. Results IDO played an immunoregulatory role by locally depleting tryptophan in tissue microenvironment which resulted in immunosuppression of allogeneic T-cell prol iferation. IDO cDNA was del ivered to chromosome in interesting cells by gene transfection and stimulated to express, which was associated with a prolongation in allograft survival in vivo . Conc lu sion IDO offers a new way in transplantation immunity, and this provid novel method for elevating allograft survival rate.
Objective To investigate a change in the differentiation and biological function of the cultured rat fibroblast (FB) transfected by the myoblast determining gene (MyoD) and the connexin 43 (Cx43) gene and to explore the possible mechanism of the MyoD and Cx43 genes on treatment of ischemic heart disease (IHD). Methods The gene cloning technology was used to construct the eukaryotic expressed plasmid vector pLenti6/V5-DEST-MyoD and pLenti6/V5DEST-Cx43 in which MyoD cDNA or Cx43 cDNA was inserted. The RFL-6 FB cells were transfected with exogenetic MyoD cDNA or Cx43 cDNA via lipofectamine, followed by the Blasticidin (50 μg/ml) selection, according to the lentiviral expression system (ViraPower) protocol. The expression and the biological functions of MyoD and Cx43 in the transfectants were testified by RT-PCR, Western blot, and molecular and immunocytochemical methods. The mophological structure changes of the cells were observed under microscope before and after the transfection. Results The expression of MyoD and Cx43 was detected in the MyoD and Cx43 genes transfected FB with RT-PCR and Western blot. The immunocytochemical methods indicated the expressionsof the MyoD and Cx43 genes, while desmin and αactin were found in these cells. The myotubes were found from the cultures incubated a week in the differentiation medium, in which the transfected cells had a characteristic of the filamentsin their cytoplasm and showed a myoblast morphology. Conclusion MyoD cDNA can induce the cultured FB to differentiate into the myoblasts and Cx43 cDNA can enhance the gap junctional intercellular communication between the cell and the cell. Thus, a further experimental foundation for the therapy of IHD can be provided.
Objective To investigate the transfection and expression of recombinant plasmid human vascular endothelial growth factor 165/pcDNA3. 1 (hVEGF165/pcDNA3. 1) in myocardial cells, and to build foundation for gene therapy and cell therapy of coronary artery disease (CAD). Methods Myocardial cells were cultured in vitro and transfected by hVEGF165/pcDNA3.1 with liposome; then transient expressed protein was detected by reverse transcriptase-polymerase chain reaction (RT-PCR), immunochemistry and Western blotting. Results A strap as hVEGF165 was obtained by RT-PCR, the protein of hVEGF165 was found in myocardial cells by immunochemistry and in supernatant by Western blotting. Conclusion The recombinant plasmid hVEGFI65/pcDNA3. 1 can be expressed in myocardial cells, and may be used in studying CAD by gene therapy and cell transplantation.
Objective To determine whether fibroblasts can be used to promote endochondral bone formation in vivo by transfer of human bone morphogenetic protein-2(hBMP-2) into fibroblasts. Methods pcDNA3-hBMP-2 was constructed by use of gene clone and recombined technique.NIH3T3 fibroblasts were transfected with pcDNA3hBMP-2. The positive cell clones were selected with G418. In NIH3T3 fibroblaststransferred with pcDNA3-hBMP-2, the expression of hBMP-2 was determined by in situ hybridization and immunohistochemical analysis; alkaline phosphatase activity was measured. hBMP-2producing fibroblasts were implanted into nude mouse muscle to observe endochondral bone formation in vivo. Results pcDNA3-hBMP-2 was successfully constructed. In NIH3T3 fibroblasts transfected with -pcDNA3-hBMP-2,the BMP-2 expression was stable; alkaline phophatase activity was much higher than that in nontransfectedNIH3T3 cells. Endochondral bone formation invivo was observed at the site of implantation 4 weeks later.Conclusion Fibroblasts transfected by hBMP-2 gene can be used to promote endochondral bone formation in vivo.
Objective To construct a recombinant adenovirus vector pAdxsi-GFP-NELL1 that co-expressing green fluorescent protein (GFP) and homo sapiens NEL-l ike 1 (NELL1) protein (a protein bly expressed in neural tissue encoding epidermal growth factor l ike domain), to observe its expression by transfecting the recombinant adenovirus into rat bone marrow mesenchymal stem cells (BMSCs) so as to lay a foundation for further study on osteogenesis of NELL1 protein. Methods From pcDNA3.1-NELL1, NELL1 gene sequence was obtained, then NELL1 gene was subcloned into pShuttle-GFP-CMV (-)TEMP vector which was subsequently digested with enzyme and insterted into pAdxsi vector to package the recombinant adenovirus vector (pAdxsi-GFP-NELL1). After verified by enzyme cutting and gel electrophoresis, pAdxsi-GFPNELL1 was ampl ified in HEK293 cells and purified by CsCl2 gradient purification, titrated using 50% tissue culture infective dose (TCID50) assay. The rat BMSCs were cultured and identified by flow cytometry and directional induction, then were infected with adenoviruses (pAdxsi-GFP-NELL1 and pAdxsi-GFP). NELL1 expression was verified by RT-PCR and immunofluorescence; GFP gene expression was verified by the intensity of green fluorescence under fluorescence microscope. Cell counting kit-8 (CCK-8) was used for investigate the influence of vectors on the prol iferation of rat BMSCs. Results Recombinant adenoviral vector pAdxsi-GFP-NELL1, which encodes a fusion protein of human NELL1, was successfully constructed and ampl ified with titer of 1 × 1011 pfu/mL. The primary BMSCs were cultured and identified by flow cytometric analysis, osteogenic and adipogenic induction, then were used for adenoviral transfection efficiency and cell toxicity tests. An multipl icity of infection of 200 pfu/cell produced optimal effects in transfer efficiency without excessive cell death in vitro. Three days after transfection with 200 pfu/cell pAdxsi-GFP-NELL1 or pAdxsi-GFP, over 60% BMSCs showed green fluorescent by fluorescence microscopy. Imunofluorescence with NELL1 antibody also revealed high level expression of human NELL1 protein in red fluorescent in these GFP expressing cells. RT-PCR analysis confirmed that the exogenous expression of NELL1 upon transfection with pAdxsi-GFPNELL1 at 200 pfu/cell, whereas NELL1 remained undetectable in Ad-GFP-transfected rat BMSCs. The prol iferative property of primary rat BMSCs after adenoviral NELL1 transfection was assayed by CCK-8 in growth medium. Growth curve demonstratedno significant difference among BMSCs transfected with pAdxsi-GFP-NELL1, pAdxsi-GFP, and no treatment control at 7 days (P gt; 0.05). Conclusion Recombinant adenovirus vector pAdxsi-GFP-NELL1 can steady expressing both GFP and NELL1 protein after being transfected into rat BMSCs. It provides a useful tool to trace the expression of NELL1 and investigate its function in vitro and in vivo.
Objective To explore the human stromal cell-derived factor 1α (hSDF-1α) and human vascular endothel ial growth factor 165 (hVEGF165) mRNA expressions of the transfected cells after hSDF-1α gene and hVEGF165 gene were transfected into rat myoblasts in vitro so as to lay a foundation for further study on the synergistic effects of 2 genes on tissue engineered skeletal muscle vascularization. Methods The myoblasts of 1-day-old Sprague Dawley rats were cultured and purified by trypsin digestion assay in vitro and were identified by immunohistochemistry staining of Desmin. pproximately 70%-80% of confluent myoblasts were transfected with enhanced green fluorescent protein (EGFP)-hSDF-1α and EGFP-hVEGF165 genes in vitro (transfected group) and were not transfected (control group). The expressions of hSDF-1αand hVEGF165 mRNA and protein in the transfected cells were detected by RT-PCR, ELISA, and Western blot espectively.Results The cultured cells were identified as myoblasts by immunohistochemistry staining of Desmin. The expression ofgreen fluorescent protein was observed in transfected cells, indicating that hSDF-1α and hVEGF165 genes were transfected into myoblasts successfully. The mRNA and protein expressions of the 2 genes were positive in the transfected group by RT-PCR and Western bolt assay at 2, 4, 6, and 8 days after transfection, and were negative in the control group. The expressions of hSDF- 1α and hVEGF165 showed a stable low level in the control group, but the expressions of the proteins increased at 2 days and then showed gradual downtrend with time in the transfected group by ELISA assay. There were significant differences in the expressions of hSDF-1α and hVEGF165 proteins between different time points in the transfected group, and between 2 groups (P lt; 0.05). Conclusion hSDF-1α and hVEGF165 genes are successfully transfected into myoblasts in vitro, and mRNA and proteins of hSDF-1α and hVEGF165 can be expressed in the transfected myoblasts, which may provide the experimental evidence for the expressions of hSDF-1α and hVEGF165 mRNA and proteins in vivo successfully.
Objective To investigate the possibility of constructing eukaryotic expression vector for human glial derived neurotrophic factor (hGDNF), transfecting it to spinal cord tissue of rats so as to treat acute spinal cord injury. Methods The eukaryotic expression vector pcDNA3-hGDNF was constructed by recombinant DNA technique, transfected into glial cell and neuron of spinal cord by liposome DOTAP as experimental group. In control group, mixture of empty vector and liposome was injected. The mRNA and protein expressions of hGNDF were detected by RT-PCR and Western blot. Results After the recombinant eukaryotic expression vector for hGDNF was digested with Hind III and XbaⅠ, electrophoresis revealed 400 bp fragment for hGDNF gene and 5 400 bp fragment for pcDNA3 vector. In the transfected spinal cord tissue, the mRNA and protein expressions of hGDNF gene were detected with RT-PCR and Western blot. Conclusion The constructed eukaryotic expression vector pcDNA3hGDNF could be expressed in the transfected spinal cord tissue of rat, so it provide basis for gene therapy of acute spinal cord injury.
Objective To evaluate the transfection efficiency and expression level of hepatocyte growth factor (HGF) by transfecting a recombinant adenovirus carrying HGF gene (Ad-HGF) into bone marrow mesenchymal stem cells (BMSCs) and to explore the effect of the expression supernatant on BMSCs in vitro so as to lay a foundation for the manufacture of gene medicine which expresses efficient cell factors. Methods Rat BMSCs were isolated using Percoll density gradient method and cultured according to the adherent property of BMSCs. The expression of c-Met was detected by immunohistochemical examination. BMSCs were infected with a recombinant adenovirus carrying green fluorescent protein gene (Ad-GFP) at multipl icity of infection (MOI, 0, 25, 50, 100, and 200 pfu/cell). To select an optimal MOI, the transfection efficiency and the degree of cell damage were assayed by flow cytometry and MTT, respectively, at 48 hours after transfecting. The expression of HGF in BMSCs transfected with optimal MOI Ad-HGF was measured with ELISA assay. MTT method was used to evaluate the prol iferation effect of HGF expression supernatant on BMSCs. Results Immunohistochemical staining showed that BMSCs expressed c-Met receptor for HGF. At 48 hours after transfecting with different MOI Ad-GFP (0, 25, 50, 100, and 200 pfu/cell), the transfection efficiencies were 0.34% ± 0.04%, 40.72% ± 0.81%, 61.72% ± 1.04%, 85.33% ± 0.83%, and 17.91% ± 0.63%, respectively; and the highest transfection efficiency was observed at 100 pfu/cell MOI. The cell damage was obviously observed when MOI was 200 pfu/cell. The expression of HGF in BMSCs reached the highest level after being transfected with 100 pfu/cell MOI Ad-HGF for 48 hours. The expression product could stimulate the prol iferation of BMSCs. The prol iferation of BMSCs gradually rose with the increase of HGF protein, and reached the highest level at 10% (320 pg). Conclusion BMSCs can be transfected efficiently with Ad-HGF and express HGF protein, which stimulates the prol iferation of BMSCs. It suggests that BMSCs is an ideal repair cells with gene vector.