Purpose To evaluate differences in the pattern of optic disc and retinal nerve fiber layer (RNFL) damage in normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) patients. Methods We enrolled 49 eyes of 49 patients:30 NTG (IOP≤21 mm Hg,1 mm Hg=0.133 kPa), 19 HTG(IOP≥25 mm Hg). Mean age was 59.2±12.3 (range, 36-75) for HTG patients, and 59.6±8.6(range, 39-71) for NTG patients. All patients underwent complete ophthalmic examination, achromatic automated perimetry (AAP), scanning laser ophthalmoscopy (SLO), scanning laser polarimetry (SLP), optical coherence tomography (OCT) and Heidelberg retinal tomography (HRT). All patients had glaucomatous optic nerve damage and abnormal AAP. Results There were no differences in mean deviation on AAP between NTG and HTG eyes (P=0.37), while the corrected pattern standard deviation was larger in NTG than in HTG eyes (P=0.014). Cup∶disc area ratios in global (P=0.03) and three sectors (Plt;0.05) except nasal sector were significantly larger in the NTG group, whereas rim area in global (P=0.03) and three sectors (Plt;0.05) except nasal quadrant obtained by SLO were smaller in NTG than in HTG eyes. The other numerical parameters obtained by three imaging technologies could not detect differences in the optic disc or RNFL anatomy between the two groups. Conclusions Cup∶disc area ratio was larger in patients with NTG than in those with HTG, whereas significant thinning of rim was associated with NTG eyes. The measurement of retinal nerve layer thickness in global and each quadrant was similar between two groups. More focal or segmental analysis of the data contained within SLO, SLP and OCT images are needed to detect localized differences in eyes with varying levels of IOP. (Chin J Ocul Fundus Dis, 2002, 18: 109-112)
ObjectiveTo compare the choroidal thickness (CT) of macular and peripapillary area among malignant glaucoma(MG), chronic primary angle-closure glaucoma (CPACG) and normal control eyes. And to investigate the correlation between CT and MG. Methods Sixteen subjects (32 eyes) with MG, 31 (31 eyes) with CPACG and 32 (32 eyes) normal controls were collected. MG eyes and the fellow non-MG eyes were included in the MG group. CT of all subjects was measured in the fovea, 1mm and 3mm to the fovea and peripapillary area using enhanced-depth imaging technique of optical coherence tomography (OCT-EDI). The average of CT in fovea by horizontal and vertical macular scan was defined as the average CT in fovea. The average of temporal, superior, nasal and inferior CT in 1 mm and 3 mm to the fovea were measured respectively. The average of temporal, superior, nasal and inferior CT was defined as the average CT in peripapillary area. The differences of CT among MG, CPACG and normal controls were compared. And the differences of CT between MG eyes and the fellow non-MG eyes were compared. ResultsAfter eliminating the influence of age, the average CT of MG in the fovea, 1mm and 3mm to the fovea was significantly thicker than that of CPACG and normal controls (P < 0.05). And the average CT of CPACG in the fovea, 1mm and 3mm to the fovea was significantly thicker than that of normal controls (P < 0.05). In peripapillary area, the temporal, superior and inferior CT of MG was significantly thicker than that of CPACG and normal controls (P < 0.05). There was no significant difference of CT in peripapillary area between CPACG and normal controls (P > 0.05). In the fovea, 1mm and 3mm to the fovea and peripapillary area, there was no significant difference of CT between MG eye and the fellow non-MG eye in MG group (t=-1.029~-0.130, P > 0.05). ConclusionsThe choroid thickness of macular and peripapillary area in MG eyes is thicker than that of CPACG and the normal controls. An increased CT of macular and peripapillary area may be one of the risk factors for MG.