west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HEAishan" 2 results
  • CHONDROGENESIS-SPECIFIC MICRORNA EXPRESSION PATTERN ANALYSIS IN CHONDROGENIC DIFFERENTIATION OF HUMAN ADIPOSE-DERIVED STEM CELLS

    ObjectiveTo investigate the microRNA (miRNA) expression profile during chondrogenic differentiation of human adipose-derived stem cells (hADSCs), and assess the roles of involved miRNAs during chondrogenesis. MethodshADSCs were harvested and cultured from donors who underwent elective liposuction or other abdominal surgery. When the cells were passaged to P3, chondrogenic induction medium was used for chondrogenic differentiation. The morphology of the cells was observed by inverted phase contrast microscopy. Alcian blue staining was carried out at 21 days after induction to access the chondrogenic status. The expressions of chondrogenic proteins were detected by ELISA at 0, 7, 14, and 21 days. The miRNA expression profiles at pre- and post-chondrogenic induction were obtained by microarray assay, and differentially expressed miRNAs were verified by real-time quantitative PCR (qRT-PCR). The targets of the miRNAs were predicted by online software programs. ResultshADSCs were cultured successfully and induced with chondrogenic medium. At 21 days after chondrogenic induction, the cells were stained positively for alcian blue staining. At 7, 14, and 21 days after chondrogenic induction, the levels of collogen type Ⅱ, Col2a1, aggrecan, Col10a1, and chondroitin sulfate in induced hADSCs were significantly higher than those in noninduced hADSCs (P<0.05). Eleven differentially expressed miRNAs were found, including seven up-regulated and four down-regulated. Predicted target genes of the differentially expressed miRNAs were based on the overlap from three public prediction algorithms, with the known functions of regulating chondrogenic differentiation of stem cells, selfrenewal, signal transduction, intracellular signaling cascade, and cell cycle control. ConclusionA group of miRNAs and their target genes are identified, which may play important roles in regulating chondrogenic differentiation of hADSCs. These results will facilitate the initial understanding of the molecular mechanism of chondrogenic differentiation in hADSCs and subsequently control hADSCs differentiation, and provide high performance seed cells for cartilage tissue engineering.

    Release date: Export PDF Favorites Scan
  • EXPRESSIONS OF CARTILAGE DEGENERATIVE RELATED GENES AND microRNAs IN TORN MENISCUS

    ObjectiveTo investigate the expressions of cartilage degenerative related genes in meniscus, and to evaluate the potential effect of meniscal damage on cartilage degeneration, and to analyze the relationship between microRNAs (miRNAs) expression and cartilage degeneration. MethodsMeniscal tissue was collected from 5 patients undergoing partial meniscectomy between September 2012 and October 2013 (experimental group), and normally meniscal tissue without tearing from amputees was used as controls (control group). Pathological changes of menisci were observed; and real-time fluorescent quatitative PCR was performed to examine the relative expression levels of cartilage degenerative related genes and miRNAs:Aggrecan (ACAN), type X collagen (COL10A1), matrix metalloproteinases 13 (MMP-13), CCAAT enhancer binding protein β (CEBP-β), a disintegrin and metalloproteinase with thrombospondinmotif 5 (ADAMTS-5), miR-193b, miR-92a, and miR-455-3p in meniscus. ResultsThere were varying degrees of degenerative pathological changes in torn meniscus of experimental group. Compared with normal meniscus of control group, the expression of ACAN was decreased, while the expressions of COL10A1, CEBP-β, ADAMTS-5, and MMP-13 were increased in torn meniscus of experimental group; and significant difference was found (P<0.05) except ACAN and MMP-13 (P>0.05). The expressions of miR-92a, miR-455-3p, and miR-193b in torn meniscus of experimental group were significantly higher than those in normal meniscus of control group (P<0.05). ConclusionMeniscal tissue has the intrinsic tendency of degeration after meniscus tear. The torn meniscus has greater stimulative impact on cartilage degeneration than normally morphological meniscus without tearing. The cartilage degenerative related miRNAs, including miR-193b, miR-92a, and miR-455-3p may contribute to the up-regulation of osteoarthritis.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content