west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HONGWenxue" 5 results
  • Feature Extraction for Breast Cancer Data Based on Geometric Algebra Theory and Feature Selection Using Differential Evolution

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

    Release date: Export PDF Favorites Scan
  • MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

    Release date: Export PDF Favorites Scan
  • Application of Semi-supervised Sparse Representation Classifier Based on Help Training in EEG Classification

    Electroencephalogram (EEG) classification for brain-computer interface (BCI) is a new way of realizing human-computer interreaction. In this paper the application of semi-supervised sparse representation classifier algorithms based on help training to EEG classification for BCI is reported. Firstly, the correlation information of the unlabeled data is obtained by sparse representation classifier and some data with high correlation selected. Secondly, the boundary information of the selected data is produced by discriminative classifier, which is the Fisher linear classifier. The final unlabeled data with high confidence are selected by a criterion containing the information of distance and direction. We applied this novel method to the three benchmark datasets, which were BCIⅠ, BCIⅡ_Ⅳ and USPS. The classification rate were 97%,82% and 84.7%, respectively. Moreover the fastest arithmetic rate was just about 0.2 s. The classification rate and efficiency results of the novel method are both better than those of S3VM and SVM, proving that the proposed method is effective.

    Release date: Export PDF Favorites Scan
  • Research on the Methods for Inter-class Distinctive Feature Selection for Leucocyte Recognition Based on Attribute Hierarchical Relationship

    To increase efficiency of automated leucocyte pattern recognition using lower feature dimensions, a novel inter-class distinctive feature selection method for chromatic leucocyte images was proposed based on attribute hierarchical relationship. According to the attribute constraints in formal concept analysis, we established a knowledge representation and discovery method based on the hierarchical optimal diagram by defining attribute value and visual representation of optimized hierarchical relationship. It was applied to human peripheral blood leucocytes classification and 12 distinctive attributes were simplified from 60 inter-class attributes, which contributes significantly to reduced feature dimensions and efficient inter-class feature classification. Compared with the classical experimental data, the inter-class distinctive feature selection method based on hierarchical optimal diagram was proved to be usable and effective for six leucocyte pattern recognition.

    Release date: Export PDF Favorites Scan
  • Automatic Classification of Epileptic Electroencephalogram Signal Based on Improved Multivariate Multiscale Entropy

    Traditional sample entropy fails to quantify inherent long-range dependencies among real data. Multiscale sample entropy (MSE) can detect intrinsic correlations in data, but it is usually used in univariate data. To generalize this method for multichannel data, we introduced multivariate multiscale entropy into multiscale signals as a reflection of the nonlinear dynamic correlation. But traditional multivariate multiscale entropy has a large quantity of computation and costs a large period of time and space for more channel system, so that it can not reflect the correlation between variables timely and accurately. In this paper, therefore, an improved multivariate multiscale entropy embeds on all variables at the same time, instead of embedding on a single variable as in the traditional methods, to solve the memory overflow while the number of channels rise, and it is more suitable for the actual multivariate signal analysis. The method was tested in simulation data and Bonn epilepsy dataset. The simulation results showed that the proposed method had a good performance to distinguish correlation data. Bonn epilepsy dataset experiment also showed that the method had a better classification accuracy among the five data set, especially with an accuracy of 100% for data collection of Z and S.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content