west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "HU Yuxia" 2 results
  • A research for single trial detection of error related negativity

    Error related negativity (ERN) is generated in frontal and central cortical regions when individuals perceive errors. Because ERN has low signal-to-noise ratio and large individual difference, it is difficult for single trial ERN recognition. In current study, the optimized electroencephalograph (EEG) channels were selected based on the brain topography of ERN activity and ERN offline recognition rate, and the optimized EEG time segments were selected based on the ERN offline recognition rate, then the low frequency time domain and high frequency time-frequency domain features were analyzed based on wavelet transform, after which the ERN single detection algorithm was proposed based on the above procedures. Finally, we achieved average recognition rate of 72.0% ± 9.6% in 10 subjects by using the sample points feature in 0~3.9 Hz and the power and variance features in 3.9~15.6 Hz from the EEG segments of 200~600 ms on the selected 6 channels. Our work has the potential to help the error command real-time correction technique in the application of online brain-computer interface system.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
  • Research on automatic removal of ocular artifacts from single channel electroencephalogram signals based on wavelet transform and ensemble empirical mode decomposition

    The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the ‘clean’ EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content