To isolate and culture adi pose-derived stem cells (ADSCs), and to study the effects of the conditioned medium of ADSCs (ADSC-CM) treated with insul in on HaCaT cells. Methods ADSCs were isolated from adipose tissue donated by the patient receiving abdominal surgery and were cultured. The concentration of ADSCs at passage 3 was adjusted to 5 × 104 cells/mL. The cells were divided into 2 groups: group A in which the cells were incubated in 1 × 10-7 mol/ Linsul in for 3 days, and group B in which the cells were not treated with insul in. ADSC-CM in each group was collected 3 days after culture, then levels of VEGF and hepatocyte growth factor (HGF). HaCaT cells were cultured and the cells at passage 4 were divided into 4 groups: group A1, 0.5 mL 2% FBS and 0.5 mL ADSC-CM from group A; group B1, 0.5 mL 2% FBS and 0.5 mL ADSC-CM from group B; group C1, 1 mL 2% FBS of 1 × 10-7 mol/ L insul in; group D1, 1 mL 2%FBS. Prol iferation of HaCaT cells was detected by MTT method 3 days after culture, apoptosis rate of HaCaT cells was measured by Annexin V-FITC double staining 12 hours after culture, and the migration abil ity was measured by in vitro wound-heal ing assay 0, 12, 24, 36 and 48 hours after culture. Results The level of VEGF in groups A and B was (643.28 ± 63.57) and (286.52 ± 46.68) pg/mL, respectively, and the level of HGF in groups A and B was (929.95 ± 67.52) and (576.61 ± 84.29) pg/mL, respectively, suggesting differences were significant between two groups (Plt; 0.05). Cell prol iferation detection showed the absorbance value of HaCaT cells in group A1, B1, C1 and D1 was 0.881 ± 0.039, 0.804 ± 0.041, 0.663 ± 0.027 and 0.652 ± 0.042, respectively, suggesting there was significant difference between groups A1 and B1 and groups C1 and D1 (P lt; 0.01), group A1 was significantly higher than group B1 (P lt; 0.05). The apoptosis rate of HaCaT cells in groups A1, B1, C1 and D1 was 5.23% ± 1.98%, 8.82% ± 2.59%, 31.70% ± 8.85% and 29.60% ± 8.41%, respectively, indicating there was significant difference between groups A1 and B1 and groups C1 and D1 (P lt; 0.05), group B1 was significantly higher than group A1 (P lt; 0.05). The migration distance of HaCaT cells in groups A1, B1,C1 and D1 at 36 hours was (0.184 6 ± 0.019 2), (0.159 8 ± 0.029 4), (0.059 2 ± 0.017 6) and (0.058 2 ± 0.012 3) mm, respectively, whereas at 48 hours, it was (0.231 8 ± 0.174 0), (0.205 1 ± 0.012 1), (0.079 2 ± 0.008 1) and (0.078 4 ± 0.011 7) mm, respectively, suggesting there were significant differences between groups A1 and B1 and groups C1 and D1 at 36 and 48 hours (P lt; 0.01), group A1 was significantly higher than group B1 (P lt; 0.05) at 36 and 48 hours, no significant difference was evident at other time points(P gt; 0.05). Conclusion ADSCs treated with insul in can significantly promote the prol iferation and the migration of HaCaT cells and inhibit their apoptosis.
Objective To construct the epidermal model with HaCaT cells and evaluate the feasibility of this model as an in vitro skin irritation test tool. Methods The HaCaT model was reconstructed with HaCaT cells by adoption gas-liquid surface culture technique, and the EpiKutis® model was reconstructed with human epidermal keratinocytes by the same techinique as control. Morphology changes of HaCaT and EpiKutis® models were observed by HE staining. Barrier function assessment was performed with penetration test. According to Organization for Economic Cooperation and Development (OECD) Test Guideline 439, the surface of the HaCaT and the EpiKutis® models were treated with 20 chemicals for 30 minutes, incubated for 42 hours, and determined tissue viability by MTT assay, to evaluate the irritation of chemicals. Then the results were compared with the irritation of chemicals with the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) system and validated reference method (VRM) for the classification of chemical, and evaluated the feasibility of this model as an in vitro skin irritation test tool. Results The results of HE staining showed that there was no complete stratified structure in the HaCaT model. The results of barrier function showed that the ET50 was 0.99 hours. The results of skin irritation of chemicals showed that the sensitivity was 100% and 100%, the specificity was 50% and 70%, and the accuracy rate was 75% and 85% for HaCaT model and EpiKutis® model respectively. Conclusion The epidermal model of HaCaT cells does not possess the complete epidermal physiological structure, the barrier function as ET50 of the HaCaT model is lower than EpiKutis® model, the chemicals in vitro skin irritation test results do not meet the OECD criteria for the determination of stimulants, so the HaCaT model is not suitable as a replacement tool in vitro to determine the chemicals skin irritation.
Objective To investigate the possibility of enhancing the inducing rate of adipose-derived stem cells (ASCs) into epidermal cells in the medium containing all-trans retinoic acid (ATRA) by supplementing with HaCaT condition medium. Methods ASCs were isolated and identified by detecting the expression of CD34, CD45, CD73, CD90, and CD105 with flow cytometry and differentiating into adipose and osteoblast lineage in the induction medium. The air-liquid interface cell culture model was established with the Transwell Room. The induction medium A contained ATRA, epidermal growth factor (EGF), and keratinocyte growth factor (KGF), while the induction medium B contained ATRA, EGF, KGF, and HaCaT condition medium. Experiment was divided into three groups cultured for 12 days: induction medium A (group A), induction medium B (group B), basic medium (group C). The epidermal cell surface markers: cytokeratin (CK) 14, 15, 16, 19 (Pan-CK) were detected by flow cytometry and CK14 were identified by immunofluorescence stain. Results After induction for 12 days, flow cytometry showed that the positive rate of Pan-CK in group B [(22.0±3.5)%] was higher than that in group A [(11.9±2.7)%], which were both higher than that in group C [(1.1±0.3)%], and the differences were statistical significantly (P<0.01). Immunofluorescence stain showed that the positive rate of CK14 in group B was higher than that in group A [(19.5±7.0)%vs. (10.8±5.7)%, P<0.01], and the expression of CK14 was negative in group C. Conclusion HaCaT condition medium can enhance the ability of ASCs differentiation into epidermal cells in the culture medium containing ATRA.