Objective To investigate the relationship of the expression between heat shock protein (HSP) 70 and 90, and Survivin and its effects on the proliferative activity in retinoblastoma (RB) cells. Methods Expression of Survivin, HSP70 and 90, and Ki-67 in conventional paraffin samples from 43 patients with RB and 6 healthy people was detected by streptavidin-biotin peroxidase (SP) immunohistochemical method. Ki67 labeling index was used to evaluate the proliferative activity in RB. Results In 43 cases of RB, positive expression of HSP70 and 90 and Survivin was found in 28 (65.12%), 37 (86.05%) and 27 (62.79%) cases, respectively. None of the 6 normal retinal tissue expressed HSP70, HSP90 or Survivin. Positive expression of Survivin was more frequent in positive expressions of HSP90 than that in negative expressions of HSP90 (P<0.05). Ki67 labeling index was higher in positive expressions of HSP90 and positive expressions of Survivin than that in their negative expressions respectively (P<0.05). Meanwhile, higher Ki67 labeling index was found in positive HSP90Survivin expressions than that in negative HSP90Survivin expressions and those cases where only HSP90 or Survivin was found (P<0.05). Expression of HSP70 did not correlate with that of Survivin, nor had any significant effect on Ki67 labeling index (P>0.05). Expression of HSPs and Survivin and Ki67 labeling index did not correlate with histological types (P>0.05). Conclusion Expression of HSP90 correlates with that of Survivin in RB. Co-existence of Survivin and HSP90 probably plays an important role in the genesis of RB.
Objective To investigate the expression of induced heat shock protein (HSP) 70 in ratprime;s retinal neurons (RNs) and Muuml;ller cells, and evaluate the protective effect of HSP 70 on RNs injured with glucose deprivation and glutamate. Methods Ratprime;s RNs and Muuml;ller cells cultured in vitro were treated with heat shock (42℃ for 1 hour), and duration of the expression of HSP70 was detected by immunocytochemical techniques. Viability of the cells was measured by methyl thiazolyl tetrazolium (MTT) chromatometry after incitant toxic injury with glucose deprivation (0.56 mmol/L glucose for 6 hours) and glutamate (100 mu;mol/L for 6 hours). Simultaneously, the expression was interdicted by HSP70. Results Hypereffective expression of HSP70 was found in cultured RNs and Muuml;ller cells after heat shock. The viability of RNs pretreated by heat shock after injured with glucose deprivation and glutamate significantly increased which could be interdicted by HSP70 antibody. Conclusion Hypereffective expression of HSP 70 may be induced by heat shock, which enhances the ability of tolerance of RNs to the incitant toxic injury by glucose deprivation and exitotoxicity. (Chin J Ocul Fundus Dis, 2005,21:110-113)