ObjectiveTo evaluate the surgical outcomes of 25G+ vitrectomy with air tamponade and 1-day prone positioning for idiopathic macular hole (IMH).MethodsA prospective analysis was performed on 39 patients (39 eyes) underwent 25G+ pars plana vitrectomy (PPV) combined with the internal limiting membrane (ILM) removal and fluid-air exchange for IMH from July 2012 to December 2013. After vitrectomy, patients were instructed to keep prone positioning for only 1 day (the air group). These patients were compared to 30 consecutive patients from July 2010 to July 2012, who were conducted 25G+ PPV with 25% SF6 tamponade. They remained in the same face-down position for 3 days postoperatively (SF6 group). Age, gender, logMAR BCVA, macular thickness, macular hole diameter, axial length, macular hole stages and pseudophakic status were collected as baseline characteristics in both groups. The initial hole-closure rate, visual outcome and intra-operative & post-operative complications were evaluated for 6 months. Group comparisons of numeric variables were made by using two sample t -test. Group difference of categorical variables was determined by using standard chi-square test or rank sum test.ResultsThirty nine patients (39 eyes) and 30 patients (30 eyes) were respectively enrolled in air group and SF6 group. The distribution of age (t=-1.63), gender (χ2=0.03), logMAR BCVA (t=0.39), macular thickness (t=-0.93), macular hole diameter (t=-0.70), axial length (t=-0.56), macular hole stages (Z=-0.47) and pseudophakic status (χ2=0.13) was similar in both groups. Anatomical closure of macular holes was achieved in 35 (89.7%) of the 39 eyes in the air group and in 27 eyes (90.0%) in the SF6 group. There was no significant difference of closure rate between the two groups (χ2=0.001, P=0.970). The postoperative visual acuity of gaining, stability and decreasing 2 or more 2 lines was achieved in 23 eyes,10 eyes and 6 eyes in air group and 18 eyes, 6 eyes and 6 eyes in SF6 group. The proportion of visual acuity improvement in air group was lower than that in SF6 group without the statistical significance (Z=-0.08, P=0.93). The gas bubble was absorbed sooner in the air group (mean 8.54±1.74 days) than in the SF6 group (mean 31.10±3.20 days). No retinal break, retinal detachment or endophthalmitis occurred in either group. Postoperatively intraocular pressure was elevated temporarily in 2 eyes of the air group and 3 eyes in the SF6 group. All returned to normal limit after local medication.ConclusionCompared to SF6 group, air group has similar anatomical macular hole closure rate and visual acuity rehabilitation.
ObjectiveTo investigate the protective effect of butylphenyphthalein (NBP) on RPE apoptosis induced by H2O2.MethodsThe human RPE cell line (human ARPE-19 cell line) were used as the experimental cells and were divided as control group, model group, NBP group. Complete medium was used in control group. The model group was stimulated with 200 μmol/L H2O2 for 2 h, and the cells were cultured in complete medium. The NBP group was cultured with 200 μmol/L H2O2 and 1 μmol/L NBP for 2 h. After changing the medium, complete medium was combined with 1 μmol/L NBP to continue the culture of the cells. Cell viability were detected by MTT assay while the morphology of RPE were observed by HE staining. Moreover, Hoechst 33258 was used to detect RPE cell apoptosis. Mitochondrial membrane potential (JC-1) staining were performed to monitor changes in cell membrane potential and the characteristic change of apoptosis in RPE cells. Furthermore, 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) staining were used to analyze the effect of NBP treatment on the expression of ROS. The effect of NBP on the expression of Heme oxygenase-1(HO-1) was analyzed by cellular immunofluorescence and western blotting.ResultsThe results of MTT assay showed that the cells were cultured for 24 and 48 hours, cell viability of control group (t=17.710, 13.760; P<0.000 1, <0.000 1) and treatment group (t=4.857, 9.225; P=0.000 7, <0.000 1) were stronger than that of model group, and the difference was statistically significant. HE staining and Hoechst33258 staining showed that compared with the control group, the number of cells in the model group was significantly less, and the cell morphology was incomplete. Compared with the model group, the number of cells in the treatment group was significantly increased, and the cell morphology was better. The results of JC-1 assay showed that the number of apoptotic cells in the model group was significantly higher than that in the control group, and the number of apoptotic cells in the treatment group was significantly lower than that in the model group. DCFH-DA staining showed that the ROS accumulation in the model group was more than that in the control group, and the ROS accumulation in the treatment group was less than that in the model group. Immunostaining observation showed that the HO-1 fluorescence intensity of the cells in the treatment group was significantly higher than that of the control group, and the difference was statistically significant (t=10.270, P=0.000 5). Western blot analysis showed that NBP up-regulated the expression level of HO-1 in a time-dependent manner. The relative expression of HO-1 at 4, 8, and 12 h of NBP showed a clear increase trend compared with 0 h, and the difference was statistically significant (F=164.91, P<0.05).ConclusionsOxidative stress injury can down-regulate the viability of RPE cells and induce apoptosis. NBP can increase the antioxidant capacity of RPE cells, reduce cell damage and inhibit cell apoptosis by up-regulating HO-1 expression.
Objective To observe the effect of polypyramidine tract binding protein-associated splicing factor (PSF) on hydrogen peroxide (H2O2) induced apoptosis of retinal pigment epithelial (RPE) cells in vitro. Methods RPE cells were cultured and divided into a normal group, normal+H2O2 group, Vec+H2O2group, PSF+H2O2 group according to the experimental design. Overexpression of PSF in RPE cells were achieved by pEGFP-PSF plasmid transient transfection into RPE cells, then RPE cells were exposed to H2O2. The morphological changes were observed by hematoxylin-eosin (HE) staining and Live/Dead staining while the survival rate of cells was detected by MTT assay. The effect of PSF on H2O2-induced RPE apoptosis was analyzed by Cell Death Detection ELISA kit. Meanwhile, intracellular reactive oxygen species (ROS) level was detected by using DCFH-DA method. Results Overexpression of PSF could effectively alleviate the morphological changes induced by H2O2 stimulation shown by HE staining, and effectively reduce dead cells number shown by Live/Dead staining. After H2O2 stimulation, the survival rate, apoptosis rate and ROS production level in PSF overexpression group were 0.68±0.12, 0.44±0.08 and 18 616±3 382.54 respectively, showing significant difference in comparison with the vector plasmid group and normal group (P<0.05). Conclusion PSF overexpression plays a protective role in H2O2-induced apoptosis by inhibiting the production of ROS in RPE cells.
ObjectiveTo observe RNA-Seq analysis of gene expression profiling in retinal vascular endothelial cells after anti-vascular endothecial growth factor (VEGF) treatment.MethodsRetinal vascular endothelial cells were cultured in vitro, and the logarithmic growth phase cells were used for experiments. The cells were divided into the control group and high glucose group. The cells of two groups were cultured for 5 hours with 5, 25 mmol/L glucose, respectively. And then, whole transcriptome sequencing approach was applied to the above two groups of cells through RNA-Seq. Now with biological big data obtained as a basis, to analyze the differentially expressed genes (DEGs). And through enrichment analysis to explain the differential functions of DEGs and their signal pathways.ResultsThe gene expression profiles of the two groups of cells were obtained. Through analysis, 449 DEGs were found, including 297 upregulated and 152 downregulated ones. The functions of DEGs were influenced by regulations over molecular biological process, cellular energy metabolism and protein synthesis, etc. Among these genes, ITGB1BP2, NCF1 and UNC5C were related to production of inflammation; AKR1C4, ATP1A3, CHST5, LCTL were related to energy metabolism of cells; DAB1 and PRSS55 were related to protein synthesis; SMAD9 and BMP4 were related to the metabolism of extracellular matrix. GO enrichment analysis showed that DEGs mainly act in three ways: regulating biological behavior, organizing cellular component and performing molecular function, which were mainly concentrated in the system generation of biological process part and regulation of multicellular organisms. Pathway enrichment analysis showed that gene expressions of the two cell groups were differentiated in transforming growth factor-β (TGF-β) signaling pathway, complement pathway and amino acid metabolism-related pathways have also been affected, such as tryptophan, serine and cyanide. Among them, leukocyte inhibitory factor 9 and bone morphogenetic protein 4 play a role through the TGF-β signaling pathway.ConclusionsHigh glucose affects the function of retinal vascular endothelial cells by destroying transmembrane conduction of retinal vascular endothelial cells, metabolism of extracellular matrix, and transcription and translation of proteins.
ObjectiveTo observe the protective effect of dl-3-n-Butylphthalide (NBP) on apoptosis of retinal Müller cells induced by hydrogen peroxide (H2O2).MethodsHuman retinal Müller cells cultured in vitro were divided into normal control group, model group (H2O2 group) and experimental group (H2O2+NBP group). The cells in the H2O2 group and H2O2+NBP group were cultured with 200 μmol/L H2O2 for 2 h. Then the culture solution of the H2O2 group replace with complete medium and the H2O2+NBP group replace with complete medium containing 1 μmol/L NBP. The normal control group was a conventional cultured cells. Müller cells were identified by immunofluorescence staining. Hematoxylin-eosin (HE) staining was used to observe the apoptosis morphological changes. MTT assay was used to detect the activity of of retinal Müller cells after after 24 h and 48 h of NBP intervention. Hoechst33258 staining was used to observe the apoptosis. LIVE/DEAD ® cell activity/cytotoxicity kit was used to detect cell viability. Dichlorofluorescein diacetate (DCFH-DA) + endoplasmic reticulum (ER) red fluorescent probe (ER-Tracker Red) double staining was used to observe the expression level of reactive oxygen species (ROS) in ER of cells. One-way ANOVA combined with Dunnett statistical method were used for data analysis.ResultsHE staining showed that the number of cells in H2O2+NBP group was higher than that in H2O2 group. MTT assay showed that after 24 h and 48 h of NBP intervention, the differences in cell viability between the normal control group and the H2O2 group, the H2O2 group and the H2O2+NBP group were statistically significant (t=28.96, 3.658, 47.58, 20.33; P<0.001, 0.022). The results of Hoechst33258 showed that the nuclear nucleus of a few cells in the H2O2+NBP group was crescent-shaped and the nuclear fragmentation was reduced, and the blue fluorescence of the remaining cells was uniform. The LIVE/DEAD ® cell activity/cytotoxicity kit showed that the number of dead cells with red fluorescence in the H2O2 group increased significantly, and the number of viable cells with green fluorescence decreased significantly. In the H2O2+NBP group, the number of viable cells with green fluorescence increased, and the number of dead cells with red fluorescence decreased. The double staining results of DCFH-DA+ER-Tracker Red showed that the green fluorescence intensity of H2O2 group was significantly enhanced; the green fluorescence intensity of H2O2+NBP group was lower than that of H2O2 group.ConclusionNBP alleviates H2O2-induced apoptosis of human retinal Müller cells by inhibiting ROS production.
Objective To observe the synergistic effect of metformin and anti-vascular endothelial growth factor (VEGF) in the treatment of diabetic retinopathy. Methods This study was composed of clinical data review and in vitro cell experiment. Ten patients (12 eyes) with diabetic macular edema treated with anti-VEGF drugs were included in the study. Patients were randomly divided into the VEGF group (anti-VEGF drug therapy) and the combined treatment group (anti-VEGF drug combined with metformin). The changes of visual acuity and central retinal thickness (CRT) were compared between the two groups. As far as the in vitro experiment was concerned, vascular endothelial cells were divided into the control group (normal cells), the VEGF group (50 ng/ml VEGF), the anti-VEGF group (50 ng/ml VEGF+2.5 μg/ml of conbercept), and the combined group (50 ng/ml VEGF +2.5 μg/ml of conbercept +2.0 mmol/L of metformin). And then MTT cell viability assay, scratch assay and real-time quantitative polymerase chain reaction assay were performed to analyze the cell viability, cell migration and mRNA level of VEGFR2, protein kinase C (PKC)-α and PKC-β successively. ResultsReview of clinical trial shows that the CRT recovery rates in the combined treatment group were much higher than that in the VEGF group at 3 month after the operation, while the difference was statistically significant (t=−2.462, P<0.05). In vitro cell experiment results showed that VEGF induction upregulated the viability and mobility of vascular endothelial cells obviously compared with control group, at the same time, the use of anti VEGF drugs can effectively reverse the trend, in contrast, combination of metformin and anti-VEGF showed a more superior effect to some extent (P<0.05). In the VEGF group, the mRNA expression of VEGFR2, PKC-αand PKC-β were significantly increased compared with the control group (P<0.01); while the mRNA expression of VEGFR2, PKC-αand PKC-β in the combination group decreased significantly compared with the VEGF group and the control group (P<0.05). However, in the anti-VEGF group, the mRNA expression of VEGFR2, PKC-αand PKC-β were decreased, but has failed to reach the level of statistical learn the difference. ConclusionsThe combination of metformin and anti-VEGF drugs can reduce the CRT of diabetic retinopathy patients and inhibit the proliferation and migration of retinal vascular endothelial cells which induced by VEGF. The synergistic mechanism may be related to the inhibitory effect of metformin on the expression of VEGFR and PKC.
ObjectiveTo observe the effect of polypyramidine tract binding protein-associated splicing factor (PSF) towards advanced glycation end products (AGEs) induced the apoptosis of Müller cells in vitro.MethodsExperimental study. Müller cells were cultured and divided into groups according to the project design, plasmid enhanced green fluorescent protein-PSF were transfected into the cells to achieve the overexpression of PSF Müller cells in vitro, then cells were exposed to AGEs and the Morphological changes were observed by HE staining and Hoechst 33258 staining while the survival rate of cells were detected by MTT assay. The effects of PSF on AGEs-induced Müller apoptosis was measured by Cell Death Detection ELISA kit. Meanwhile, 2′,7′-dichlorofluorescin diacetate staining was performed to monitor the protective effects of PSF on AGEs-induced Müller cells ROS.ResultsThe morphology of cells in normal group was full and the cytoplasm staining was uniform. In N+AGEs group and Vec+AGEs group, cell volume decreased, cytoplasm was dense and concentrated, and eosinophilic staining was enhanced. The cell morphology of PSF+AGEs group was still full, with uniform cytoplasm staining and uniform nucleus staining. The viability of N+AGEs group, Vec+AGEs group and PSF+AGEs group were 0.42±0.11, 0.35±0.12 and 0.68±0.12. The apoptosis values were 1.08±0.16, 0.96±0.20 and 0.44±0.08. The intracellular ROS levels were 28 833.67±3 550.06, 28 356.67±4 854.81, 186 163.00±382.54. Compared with N+AGEs group and Vec+AGEs group, the cell viability of PSF+AGEs group was significantly improved (F=20.65, P=0.000), cell apoptosis value (F=43.43, P=0.000) and intracellular ROS level (F=18.86, P=0.000).ConclusionPSF overexpression play a protective role in AGEs-induced apoptosis by inhibiting the production of ROS in Müller cells.
ObjectiveTo analyze the expression of miRNA involved in regulating retinal neovascularizationin in retinal tissue of oxygen-induced retinopathy (OIR) mice.MethodsEighty healthy C57BL/6J mice were randomly divided into control group and OIR group at postnatal day 7(P7). Control group were not received any treatment and then exposed to room air. The OIR group was exposed to (75±2)% oxygen and then under room air at P12. Mice of all groups were euthanized at P17. Retinal neovasculation (RNV) was evaluated by counting the number of pre-retinal neovascular cells and analysing no perfusion area by immunofluorescent staining of the mouse retina.Total RNA was extracted from retinal tissue,and miRNA microarrays was performed to identify differentially expressed miRNA in the two groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed differential microRNA.ResultsCompared with the control group,the retinal neovascular tufts and the no perfusion area were both significantly smaller than those in OIR group. The number of pre-retinal neovascular cell nuclei in retinas from control group were obviously lower than those in the retinas from OIR group (t=9.025, P<0.05). MiRNA microarray analysis showed that 54 miRNA in OIR group showed statistically different expression in control group, 47 miRNA were up-regulated and 7 miRNA were down-regulated. The results of PCR were consistent with the trend of microarray. In GO analysis, 1112 items were significantly different (P<0.05), and 65 items were significantly different in KEGG analysis of expression profile (P<0.05).ConclusionsThe miRNA expression in retinal tissue of OIR mice is different from that of normal mice, and these miRNA may be involved in the development of RNV. There are 54 miRNA expression differences in retinal tissue of OIR compared with normal mouse retinal tissue.
ObjectiveTo observe the inhibitory effect of lentiviral vector miR-191 (LV-191) on retinal neovascularization (RNV) in mice model of oxygen-induced retinopathy (OIR).MethodsEighty healthy 7-day-old C57BL/6J mice were randomly divided into 5 groups including normal group, non-intervention group, normal saline (NS) group, LV-191 group and LV-green fluorescent protein (GFP) group, 16 mice in each group. The OIR model was established in the non-intervention group, NS group, LV-191 group and LV-GFP group. NS group, LV-191 group and LV-GFP group were given an intravitreal injection of 1 μl of NS, LV-191 and LV-GFP at the age of 12 days. No injection was performed in the non-intervention group. In normal group,newborn mouse were maintained in room air form P0 to P17, and no treatment was performed. Mice in all five groups were euthanized at P17. Retinal neovasculation (RNV) was evaluated by counting the number of pre-retinal neovascular cells and analysis of non-perfusion area area by immunofluorescent staining of the mouse retina. Real-time quantitative PCR (RT-PCR) to detect miR -191 and P21 expression of retinal tissue.ResultsIn the LV-191 group, the non-perfusion area were both significantly smaller than those in non-intervention group, NS group and LV-GFP group (F=127.20, P<0.001). The number of pre-retinal neovascular cell nuclei in retinas from LV-191 group were obviously lower than those in the retinas from non-intervention group, NS group and LV-GFP group (F=31.71, P<0.05). RT-PCR showed that the LV-191 and P21 level of LV-191 group increased significantly than other groups (F=10.95, 15.60; P<0.05).ConclusionIntravitreal injection of LV-191 inhibits RNV in mice model of OIR possibly through up-regulating p21.
ObjectiveTo observe the protective effect of polypyrimidine bundle-binding protein-related splicing factor (PSF) over-expression on RPE cell injury induced by advanced glycation end products (AGEs).MethodsThe human RPE cells cultured in vitro were divided into three groups: normal control group (N group), blank control group (N + AGEs group), empty vector control group (Vec + AGEs group), and PSF high expression group (PSF + AGEs). group). RPE cells in N group were routinely cultured; RPE cells in N + AGEs group were only transfected but did not introduce any exogenous genes combined with AGEs induction; Vec +AGEs group and PSF + AGEs group were transfected with pcDNA The empty vector or pcDNA-PSF eukaryotic expression plasmid was introduced into RPE cells and induced by AGEs. Except the N group, the other 3 groups of cells were transfected accordingly, and were stimulated with 150 μg/ml AGEs for 72 h after 24 h. HE staining and Hoechst 33258 staining were used to observe the effect of high PSF expression on the morphological changes of RPE cells; ROS level detection was used to analyze the effect of PSF high expression on the ROS expression of RPE cells induced by AGEs; MTT colorimetric method was used to detect the high PSF expression Effects on the viability of RPE cells; Western blot was used to detect the effects of different time and dose of PSF on the expression of heme oxygenase 1 (HO-1).ResultsHE staining and Hoechst 33258 staining observation showed that the cells in group N were full in shape, the nucleus was round, the cytoplasm was rich, and the staining was uniform; the cells in N + AGEs group and Vec + AGEs group were reduced in size, the eosinophilic staining was enhanced, and the nucleus was densely densely stained. Pyrolysis and even fragmentation; the morphology of cells in the PSF + AGEs group was still full, the cytoplasm staining was more uniform, and the nucleus staining was uniform. The results of MTT colorimetry showed that high expression of PSF can effectively improve the viability of RPE cells, but this effect can be effectively antagonized by ZnPP, and the difference is statistically significant (F=33.26, P<0.05). DCFH-DA test results showed that compared with the N + AGEs group and Vec + AGEs group, the ROS production in PSF + AGEs group decreased, the difference was statistically significant (F=11.94, P<0.05). Western blot analysis showed that PSF protein up-regulated HO-1 expression in a time- and dose-dependent manner. The relative expression level of HO-1 at 24, 48, and 72 h after PSF protein was significantly higher than that at 0 h, and the difference was statistically significant (F=164.91, P<0.05). The relative expression level of HO-1 under the action of 0.1, 0.5, 1.0, 1.5, and 2.0 μg PSF protein was significantly higher than 0.0 μg, and the difference was statistically significant (F=104.82, P<0.05).ConclusionPSF may inhibit the production of ROS by up-regulating the expression of HO-1, thus protecting the RPE cells induced by AGEs.