west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Human brain-derived neurotrophic factor" 3 results
  • PRELIMINARY STUDY ON EFFECTS OF HUMAN BRAIN-DERIVED NEUROTROPHIC FACTOR GENE-MODIFIED BONE MARROW MESENCHYMAL STEM CELLS BY INTRAVENOUS TRANSPLANTATION ON STRUCTURE AND FUNCTION OF RAT INJURED SPINAL CORD

    Objective To transplant intravenously human brain-derived neurotrophic factor (hBDNF) genemodified bone marrow mesenchymal stem cells (BMSCs) marked with enhanced green fluorescent protein (EGFP) to injured spinal cord of adult rats, then to observe the viabil ity of the cells and the expressions of the gene in spinal cord, as well as theinfluence of neurological morphological repairing and functional reconstruction. Methods Ninety-six male SD rats weighing (250 ± 20) g were randomly divided into 4 groups: hBDNF-EGFP-BMSCs transplantation group (group A, n=24), Ad5-EGFPBMSCs transplantation group (group B, n=24), control group (group C, n=24), and sham operation group (group D, n=24). In groups A, B, and C, the spinal cord injury models were prepared according to the modified Allen method at the level of T10 segment, and after 3 days, 1 mL hBDNF-EGFP-BMSCs suspension, 1 mL Ad5-EGFP-BMSCs suspension and 1 mL 0.1 mol/L phosphate buffered sal ine (PBS) were injected into tail vein, respectively; in group D, the spinal cord was exposed without injury and injection. At 24 hours after injury and 1, 3, 5 weeks after intravenous transplantation, the structure and neurological function of rats were evaluated by the Basso-Beattie-Bresnahan (BBB) score, cortical somatosensory evoked potential (CSEP) and transmission electron microscope. The viabil ity and distribution of BMSCs in the spinal cord were observed by fluorescent inverted phase contrast microscope and the level of hBDNF protein expression in the spinal cord was observed and analyzed with Western blot. Meanwhile, the expressions of neurofilament 200 (NF-200) and synaptophysin I was analyzed with immunohi stochemistry. Results After intravenous transplantation, the neurological function was significantly improved in group A. The BBB scores and CSEP in group A were significantly higher than those in groups B and C (P lt; 0.05) at 3 and 5 weeks. The green fluorescence expressions were observed at the site of injured spinal cord in groups A and B at 1, 3, and 5 weeks. The hBDNF proteinexpression was detected after 1, 3, and 5 weeks of intravenous transplantation in group A, while it could not be detected in groups B, C, and D by Western blot. The expressions of NF-200 and synaptophysin I were ber and ber with transplanting time in groups A, B, and C. The expressions of NF-200 and synaptophysin I were best at 5 weeks, and the expressions in group A were ber than those in groups B and C (P lt; 0.05). And the expressions of NF-200 in groups A, B, and C were significantly ber than those in group D (P lt; 0.05), whereas the expressions of synaptophysin I in groups A, B, and C were significantly weaker than those in group D (P lt; 0.05). Ultramicrostructure of spinal cords in group A was almost normal. Conclusion Transplanted hBDNF-EGFP-BMSCs can survive and assemble at the injured area of spinal cord, and express hBDNF. Intravenous implantation of hBDNF-EGFP-BMSCs could promote the restoration of injured spinal cord and improve neurological functions.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • CONSTRUCTION OF RETROVIRAL VECTOR WITH HUMAN BRAIN-DERIVED NEUROTROPHIC FACTOR GENE EXPRESSION AND IN THE FIBROBLASTS EXPRESSION

    Objective To construct human brain-derived neurotrophic factor retroviral vector-pLXSN (hBDNFpLXSN), and to evaluate the bioactivity of hBDNF. Methods The genome mRNA was extracted from embryonic brain tissue of a 5-month-old infant, the hBDNF gene sequence was obtained with RT-PCR technology, and hBDNF-pLXSN constructed in vitro was used to infect the fibroblasts (NIH/3T3). The expression of hBDNF was identfied by the immunohistochemistry method, and the NIH/3T3 and BDNF biological activities were determined by culture of the PC12 cells and dorsal root gangl ia. Results The hBDNF-pLXSN was constructed successfully by sequencing analyses. The infected NIH/3T3 showed positive expression of hBDNF. The infected NIH/3T3 could product hBDNF. Bioactivity of the products could support the PC12cell survival and neurite growth in the primary cultures of dorsal root gangl ia neurons of mice. Conclusion hBDNF-pLXSNvirus has the abil ity to infect NIH/3T3 and make it expressed and secreted hBDNF with the biological activity. It can be used to treat facial paralysis as a gene therapy.

    Release date:2016-09-01 09:06 Export PDF Favorites Scan
  • LEARNING AND MEMORY AMELIORATION OF TRANSPLANTATION OF THE NEURAL STEM CELLS MODIFIED WITH HUMAN BRAIN-DERIVED NEUROTROPHIC FACTOR GENE ON ALZHEIMERDISEASE MODEL RAT

    Objective To investigate the memory amelioration of the Alzheimer disease (AD)model rat after being transplanted the single neural stem cells(NSC) and NSC modified with human brain-derived neurotrophic factor(hBDNF) gene. Methods Forty SD rats were divided evenly into 4 groups randomly. The AD model rats were made by cutting unilaterallythe fibria fornix of male rats. Ten to twelve days after surgery, the genetically modified and unmodified NSC were implanted into the lateral cerebral ventricle of group Ⅲ and group Ⅳ respectively. Two weeks after transplantation, theamelioration of memory impairment of the rats was detected by Morris water maze. Results The average escaping latency of the group Ⅲ and group Ⅳ (41.84±21.76 s,25.23±17.06 s respectively) was shorter than that of the group Ⅱ(70.91±23.67 s) (Plt;0.01). The percentage of swimming distance inthe platform quadrant in group Ⅲ (36.9%) and in group Ⅳ(42.0%) was higherthan that in the group Ⅱ(26.0%) (Plt;0.01). More marginal and random strategies were used in group Ⅱ.The percentage of swimming distance in the platform quadrant in group Ⅳ was also greater than that in group Ⅲ(Plt;0.05). There were no significant differences in the average escaping latency, the percentage of swimming distance in the platform quadrant and the probe strategy between group Ⅳ and group Ⅰ(Pgt;0.05).More lineal and oriented strategies were used in group Ⅳ. Conclusion The behavioral amelioration of AD model rat was obtained by transplanting single NSC and hBDNF-gene-modified NSC. The effect of the NSC group modified with hBDNF gene is better than that of the groupⅢ.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content