west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Hypoxia mimetic agent" 2 results
  • Comparative study between hypoxia and hypoxia mimetic agents on osteogenesis of bone marrow mesenchymal stem cells in mouse

    ObjectiveTo compare the effects on the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) between hypoxia and hypoxia mimetic agents dimethyloxalylglycine (DMOG) under normal oxygen condition. MethodsBMSCs were isolated and cultured from healthy 3-4 weeks old Kunming mouse. Cell phenotype of CD29, CD44, CD90, and CD34 was assayed with flow cytometry; after osteogenic, adipogenic, and chondrogenic induction, alizarin red staining, oil red O staining, and toluidine blue staining were performed. The passage 3 BMSCs were cultured under normal oxygen in control group (group A), under 1%O2 in hypoxia group (group B), and under normal oxygen and 0.5 mmol/L DMOG in DMOG intervention group (group C). BMSCs proliferation was estimated by methyl thiazolyl tetrazolium assay at 1, 2, 3, and 4 days. Alkaline phophatase (ALP) expression was determined at 7 and 14 days after osteogenic induction. Western blot was employed for detecting hypoxia inducible factor-1α(HIF-1α) at 24 hours. Real time fluorescence quantitative PCR was employed for detecting the mRNA expression of runt-related transcription factor 2 (RUNX2) and Osterix at 3 and 7 days. Alizarin red staining was applied to assess the deposition of calcium tubercle at 21 days. ResultsThe BMSCs presented CD29(+), CD44(+), CD90(+), and CD34(-); and results of the alizarin red staining, oil red O staining, and toluidine blue staining were positive after osteogenic, adipogenic, and chondrogenic induction. No significant difference in BMSCs proliferation was observed among 3 groups at 1 day (P>0.05); compared with group A, BMSCs proliferation was inhibited in group C at 2, 3, and 4 days, but no significant difference was observed (P>0.05); compared with group A, BMSCs proliferation was significantly promoted in group B (P < 0.05). At each time point, compared with group A, the ALP expression, HIF-1αprotein relative expression, and mRNA relative expressions of RUNX2 and Osterix were significantly up-regulated in groups B and C (P < 0.05); compared with group B, the ALP expression, the RUNX2 and Osterix mRNA relative expression were significantly up-regulated in group C (P < 0.05); compared with group C, the HIF-1αprotein relative expression was significantly up-regulated in group B (P < 0.05). The alizarin red staining showed little red staining materials in group A, some red staining materials in group B, and a large number of red staining materials in group C. ConclusionHypoxia can promote BMSCs proliferation, DMOG can not influence the BMSCs proliferation; both hypoxia and DMOG can improve osteogenic differentiation of BMSCs, and DMOG is better than hypoxia in improving the BMSCs osteogenesis.

    Release date: Export PDF Favorites Scan
  • Experimental study on the effect of desferrioxamine on targeted homing and angiogenesis of bone marrow mesenchymal stem cells

    ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content