Aiming at the problems of missing important features, inconspicuous details and unclear textures in the fusion of multimodal medical images, this paper proposes a method of computed tomography (CT) image and magnetic resonance imaging (MRI) image fusion using generative adversarial network (GAN) and convolutional neural network (CNN) under image enhancement. The generator aimed at high-frequency feature images and used double discriminators to target the fusion images after inverse transform; Then high-frequency feature images were fused by trained GAN model, and low-frequency feature images were fused by CNN pre-training model based on transfer learning. Experimental results showed that, compared with the current advanced fusion algorithm, the proposed method had more abundant texture details and clearer contour edge information in subjective representation. In the evaluation of objective indicators, QAB/F, information entropy (IE), spatial frequency (SF), structural similarity (SSIM), mutual information (MI) and visual information fidelity for fusion (VIFF) were 2.0%, 6.3%, 7.0%, 5.5%, 9.0% and 3.3% higher than the best test results, respectively. The fused image can be effectively applied to medical diagnosis to further improve the diagnostic efficiency.
Image fusion currently plays an important role in the diagnosis of prostate cancer (PCa). Selecting and developing a good image fusion algorithm is the core task of achieving image fusion, which determines whether the fusion image obtained is of good quality and can meet the actual needs of clinical application. In recent years, it has become one of the research hotspots of medical image fusion. In order to make a comprehensive study on the methods of medical image fusion, this paper reviewed the relevant literature published at home and abroad in recent years. Image fusion technologies were classified, and image fusion algorithms were divided into traditional fusion algorithms and deep learning (DL) fusion algorithms. The principles and workflow of some algorithms were analyzed and compared, their advantages and disadvantages were summarized, and relevant medical image data sets were introduced. Finally, the future development trend of medical image fusion algorithm was prospected, and the development direction of medical image fusion technology for the diagnosis of prostate cancer and other major diseases was pointed out.