west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "JIAN Yuekui" 2 results
  • SPINAL FUSION OF LUMBAR INTERTRANSVERSE PROCESS BY USING TISSUE ENGINEERED BONE WITH XENOGENEIC DEPROTEINIZED CANCELLOUS BONE AS SCAFFOLD

    Objective To study the properties of the xenogeneic deproteinized cancellous bone used as a scaffold in the bone tissue engineering andits application to the spinal fusion of the lumbar intertransverse process in agoat. Methods The deproteinized bone was derived from an adult pig’s femoral cancellous bone through the physical and chemical treatments. Its morphological features, constituting components, and biomechanical properties were examined by the scanning electron microscopy, X-ray diffraction analysis, and mechanical experimental instrument. The cell-material complex was observed under the inverted phase contrast microscope to evaluate the adhesion and the growth of the osteoblasts. The experimental model of the spinal fusion of the lumbar intertransverse process was produced in 12 male goats aged 6-8 months, which were divided into two groups. In Group A, the tissue engineered bone constructed by thexenogeneic deproteinized cancellous bone, the recombinant human bone morphogenetic protein 2, and the mesenchymal stem cells was used for the spinal fusion; however, in Group B the autoilium was used. The samples were harvested at 4, 8 and 12 weeks postoperatively, and a series of examinations were performed, including the radiography and the histomorphological assay. Results The deproteinized cancellous bone had a natural pore network system, with an aperture ranging in size from 200 to 500 μm, containing a main organic material ofcollagen and the inorganic material of hydroxyapatite. So, the deproteinized cancellous bone had a good mechanical strength and a good histocompatibility. In Group A, the X-ray examination at different timepoints postoperatively showed that at 4 weeks,the bridging areas of all the fusion sites were not clear, especially on the internal side; at 8 weeks, the upper and lower bridged parts had a narrowed gap, with formation of much continuous bony callus; at 12 weeks, a complete fusion occurred. In the early stage, the material density was slightly lowerin Group A than in Group B, but at 12 weeks the density was almost the same in both the groups. Histological examination in the transplant area showed that at 4 weeks in Group A there was a new bone formation in a multipoint way; at 8 weeks, a “sandwichshaped” new bone wascrossed with the transplanting materials; and at 12 weeks, a medullary cavity was remodeled and a new cancellous bone was formed. The osteogenic process of thetissue engineered bone constructed by the xenogeneic deproteinized cancellous bone scaffold was almost the same as the autoilium osteogenesis. Conclusion The xenogeneic deproteinized cancellous bone is a good material in the bone tissue engineering, which can be used as an osteogenesis scaffold andprovide a stable environment for revascularization and osteoblastic differentiation.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • Effectiveness analysis of Lenke type 1 adolescent idiopathic scoliosis with different proximal fixation vertebra

    ObjectiveTo investigate the short-term effectiveness of proximal fixation of one vertebra above to the upper end vertebra and the upper end vertebra in the treatment of Lenke type 1 adolescent idiopathic scoliosis (AIS) patients with preoperative right higher shoulder.MethodsThe clinical data of 37 Lenke type 1 AIS patients treated with posterior correction between January 2010 and December 2015 were retrospectively analysed. According to proximal fixation vertebra, the patients were divided into 2 groups: group A (n=17), proximal fixation of one vertebra above to the upper end vertebra; group B (n=20), proximal fixation of the upper end vertebra. There was no significant difference in gender, age, Risser stage, radiographic shoulder height (RSH), flexibility of proximal thoracic curve, flexibility of main thoracic curve, flexibility of thoracolumbar/lumbar curve between 2 groups (P>0.05). The main thoracic curve Cobb angle, proximal thoracic curve Cobb angle, thoracolumbar/lumbar curve Cobb angle, apical vertebral translation (AVT), clavicle angle (CA), RSH, coronal trunk shift, sagittal trunk shift, thoracic kyphosis (TK), and lumbar lordosis (LL) were measured by X-ray film before operation, and at 1 month, 1 year, and 2 years after operation. The correction indexes of main thoracic curve were evaluated, including the correction degree and correction rate of main thoracic curve and AVT correction at 1 month after operation, the loss degree and the loss rate of the correction of main thoracic curve at 2 years after operation.ResultsThe operation time and intraoperation blood loss in group A were significantly greater than those in group B (P<0.05). All the patients were followed up, and the follow-up time was 2-4 years (mean, 2.8 years) in group A and 2-3.5 years (mean, 2.6 years) in group B. No serious complication such as nerve damage occurred during perioperative period and follow-up period. No complication such as failure of fusion, loosening and rupture of internal fixator, adjacent segment degeneration, and proximal junctional kyphosis occurred. There was no significant difference between 2 groups in the correction degree and correction rate of main thoracic curve and AVT correction at 1 month after operation, the loss degree and the loss rate of the correction of main thoracic curve at 2 years after operation (P>0.05). Comparison within the two groups: except for LL had no significant difference between pre- and post-operation (P>0.05), the other indicators were significantly improved after operation (P<0.05) in the two groups. There were significant differences in RSH, CA, proximal thoracic curve Cobb angle, and thoracolumbar/lumbar curve Cobb angle at each time point after operation (P<0.05), and there were spontaneous correction during follow-up; however, there was no significant difference in main thoracic curve Cobb angle, AVT, TK, LL, trunk shift at each time point after operation (P>0.05), and there was no significant loss during follow-up. Comparison between the two groups: there was no significant difference in all the radiographic indexes at pre- and post-operation (P>0.05).ConclusionFor Lenke type 1 AIS patients with preoperative right high shoulder, proximal fixation vertebra be fixed to the upper end vertebral can obtain satisfactory short-term orthopedic effectiveness and reduce blood loss and operation time.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content