A miniaturized, low-cost high-intensity focused ultrasound device is developed for the problems of cross-contamination and uneven sample fragmentation in conventional ultrasound devices. This device generates ultrasonic waves through a concave spherical self-focusing piezoelectric ceramic piece, and creates a cavitation effect in the focusing area to achieve sample fragmentation. The feasibility of the device is demonstrated by physical simulation, then a driving circuit with adjustable power is designed and manufactured to generate 0 ~ 22.4 W acoustic power, and finally paraffin-embedded sample dewaxing experiments are performed to verify the validation of the device. The experimental results show that the dewaxing efficiency and safety of the high-intensity focused ultrasound device is significantly better than those of traditional chemical methods, and this device is comparable with commercial ultrasonic instruments. In summary, the high-intensity focused ultrasound device is expected to be applied in automated nucleic acid extraction and purification equipment and has a broad application prospect in the field of sample pre-processing.