west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Baoming" 4 results
  • Automatic three-dimensional segmentation of liver and tumors regions based on conditional generative adversarial networks

    The three-dimensional (3D) liver and tumor segmentation of liver computed tomography (CT) has very important clinical value for assisting doctors in diagnosis and prognosis. This paper proposes a tumor 3D conditional generation confrontation segmentation network (T3scGAN) based on conditional generation confrontation network (cGAN), and at the same time, a coarse-to-fine 3D automatic segmentation framework is used to accurately segment liver and tumor area. This paper uses 130 cases in the 2017 Liver and Tumor Segmentation Challenge (LiTS) public data set to train, verify and test the T3scGAN model. Finally, the average Dice coefficients of the validation set and test set segmented in the 3D liver regions were 0.963 and 0.961, respectively, while the average Dice coefficients of the validation set and test set segmented in the 3D tumor regions were 0.819 and 0.796, respectively. Experimental results show that the proposed T3scGAN model can effectively segment the 3D liver and its tumor regions, so it can better assist doctors in the accurate diagnosis and treatment of liver cancer.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON PORCINE ACELLULAR DERMAL MATRIX AND SPLIT-THICKNESS SKIN GRAFTS TO REPAIR FULL-THICKNESS SKIN DEFECTS

    Objective To compare the effect of the composite skin graft consisting of spl it-thickness skin grafts (STSGs) and porcine acellular dermal matrix (PADM) with STSGs only, and to histologically observe the turnover of the PADM in rats. Methods Twenty female Sprague-Dawley rats, weighing 200-225 g, were included. The size of 4.0 cm × 2.5 cm PADM was implanted into hypoderm of the left side of Sprague-Dawley rats’ back. After 10-14 days, the size of 4.0 cm × 2.5 cm full-thickness skin defects were made on the left to expose the PADM under the skin and the same size of full-thickness skin defects were made on the right of the rats’ back. The excised full-thickness skin was made to STSGs about 0.2 mm by drum dermatome. The defects were grafted with composite skin (STSGs on the PADM, experimental group) and STSGs only (control group). The survival rate, the constraction degree of grafts, and the histological change in grafts area were observed at 2, 4, 8, and 20 weeks after operation. Results At 2 weeks after STSGs (0.2 mm) placed on vascularized PADM, STSGs and PADM adhered together and the composite skin had a good survival. The control group also had a good survival. Histological observations showed that STSGs and PADM grew together, neutrophil ic granulocytes and lymphocytes infiltrated in the PADM and some macrophages around the PADM. Fibrous connective tissues were filled under the STSGs in control group. At 4-8 weeks after transplantation, the composite skin had a good survival and the composite skin was thick, soft, and elastic. STSGs survived almost totally in control group, but the grafts were thin. Histological observations showed that inflammatory reactions of PADM faded gradually in experimental group; scar tissues formed under the STSGs in control group. At 20 weeks after transplantation, composite skin was flat, thick, and elastic in experimental group, but the STSGs were thinner and less elastic in control group. Histological observations showed that histological structures of the PADM were similar to the dermal matrix of rats, and the results showed that the collagen matrix of PADM was gradually replaced by the rats’ collagen matrix. Scar tissues were filled under the STSGs in control group. Wound heal ing rates of experimental group were lower than those of control group at 4 and 8 weeks (P﹤0.05); wound contraction rates of experimental group had lower tendency than those of control group, but showing no significant differences (P gt; 0.05). Conclusion  Coverage wound with composite skin which composed of STSGs and PADM could improve wound heal ing qual ity; the composite skin is thicker and better elastic than STSGs only. The collagen matrix of PADM is gradually replaced by rats’ collagen matrix.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • STUDY ON CYTOTOXICITY OF MICRODOSIS PERACETIC ACID IN VITRO

    Objective To evaluate the cytotoxicity of microdosis peracetic acid (PAA) so as to provide the evidence for making residual l imit of PAA steril ization. Methods Mouse fibroblasts (L929 cell l ine) cultured in vitro were observed to evaluate the influence of microdosis PAA including 1 × 10-6, 2 × 10-6, 3 × 10-6, 4 × 10-6, 5 × 10-6, and 10 × 10-6 (V/V). Theproliferation of cells was determined by MTT assay at 2, 4, and 7 days of culture. The growth curve and the relative growth rate (RGR) were obtained. The cytotoxicity of PAA at different concentrations was evaluated according to RGR. Results At 2, 4, and 7 days after culture, fibroblasts of 1 × 10-6 group grew with normal morphology analogous to control group, while the cell growth of other groups were poor. With the increase of PAA concentration, the absorbance (A) values decreased, which suggested that there was a significant negative correlation between cell prol iferation and PAA concentration. And the correlation coefficient was — 1.000 at 2 and 4 days, — 0.964 at 7 days. There was no significant difference in A value between 1 × 10-6 group and the control group (P gt; 0.05), while there were significant differences in A value between the control group and other concentration groups (P lt; 0.05). The growth curve of 1 × 10-6 group was similar to that of the control group, both had obvious phase of exponential growth. The growth curves of other groups had no obvious phase of exponential growth. The cytotoxicity of 1 × 10-6 group was classified as level 1, 2 × 10-6 group as level 2, 3 × 10-6 group as level 3, 4 × 10-6 group as level 3-4, 5 × 10-6 group and 10 × 10-6 group as level 4. Conclusion PAA of 1 × 10-6 had no obvious cytotoxicity. The residual l imit of PAA less than 1 × 10-6 was recommended.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • APPLICATION OF TECHNIQUE OF LABELING BMSCs WITH PKH26 TO TISSUE ENGINEERED BONE CONSTRUCTION

    Objective To explore the feasibil ity of using PKH26 as a cell tracer to construct tissue engineered bone. Methods BMSCs isolated from the bone marrow of 1-week-old New Zealand white rabbit were cultured. The BMSCs at passage 3 were labeled with PKH26 and were observed under fluorescence microscope. The percentage of the labeled cells wasdetected by Flow cytometer. The labeled cells were induced to differentiate into osteoblasts in vitro and the morphology of the cells after induction was observed under inverted phase contrast microscope. The osteogenic induction was evaluated by ALP staining and Alizarin red staining. The cells labeled with PKH26 were seeded on the bio-derived bone to construct tissue engineered bone in vitro. Then the compound of cells and material were observed under fluorescence microscope. The compound of labeled cells and material were implanted into the rabbit thigh muscle, and the transformation of the labeled cells was observed by fluorescence microscope 14 and 28 days later. Results Fluorescence microscope observation: the BMSCs labeled by PKH26 were spherical and presented with red and uniform-distributed fluorescence, and the contour of the cells were clearly observed when they were adherent 24 hours after culture. Flow cytometric detection revealed that the percentage of labeled cells was 97.2%. After osteogenic induction, the morphology of the cells changed from long-fusiform to polygon-shape or cube-shape, more ECM was secreted, andthe ALP and the Alizarin red staining were positive. At 48 hours after culturing the PKH26 labeled BMSCs with bio-derived bone, the fluorescence microscope observation showed that there was red fluorescence on the surface and inside of the material. At 14 days after implantation, the labeled cells with red and l ight fluorescence were evident in the implantation area; while at 28 days, the cells with red fluorescence were still evident but less in quantity and weaker in fluorescence strength. Conclusion PKH26 can be used as BMSCs label for the construction of tissue engineered bone in vitro and the short-term tracing in vivo.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content