Central lung cancer is a common disease in clinic which usually occurs above the segmental bronchus. It is commonly accompanied by bronchial stenosis or obstruction, which can easily lead to atelectasis. Accurately distinguishing lung cancer from atelectasis is important for tumor staging, delineating the radiotherapy target area, and evaluating treatment efficacy. This article reviews domestic and foreign literatures on how to define the boundary between central lung cancer and atelectasis based on multimodal images, aiming to summarize the experiences and propose the prospects.
Radiotherapy is one of the main treatments for tumor with increasingly high request for technique precision and the equipment stability. Machine learning may bring radiotherapy simplicity, individualization and precision, and may improve the automatic level of planning and quality assurance. Based on the process of radiotherapy, this paper reviews the applications and researches on machine learning, with an emphasis on deep learning, and proposes the prospects in the following aspects: segmentation of normal tissue and tumor, planning, treatment delivery, quality assurance and prognosis prediction.