west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Deyu" 5 results
  • Simulation of spontaneous breathing for healthy adults using a nonlinear airway-segmented model of respiratory mechanics

    One-compartment lumped-parameter models of respiratory mechanics, representing the airflow resistance of the tracheobronchial tree with a linear or nonlinear resistor, are not able to describe the mechanical property of airways in different generations. Therefore, based on the anatomic structure of tracheobronchial tree and the mechanical property of airways in each generation, this study classified the human airways into three segments: the upper airway segment, the collapsible airway segment, and the small airway segment. Finally, a nonlinear, multi-compartment lumped-parameter model of respiratory mechanics with three airway segments was established. With the respiratory muscle effort as driving pressure, the model was used to simulate the tidal breathing of healthy adults. The results were consistent with the physiological data and the previously published results, suggesting that this model could be used for pathophysiological research of respiratory system.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Research progress on wearable physiological parameter monitoring and its clinical applications

    Wearable physiological parameter monitoring devices play an increasingly important role in daily health monitoring and disease diagnosis/treatment due to their continuous dynamic and low physiological/psychological load characteristics. After decades of development, wearable technologies have gradually matured, and research has expanded to clinical applications. This paper reviews the research progress of wearable physiological parameter monitoring technology and its clinical applications. Firstly, it introduces wearable physiological monitoring technology’s research progress in terms of sensing technology and data processing and analysis. Then, it analyzes the monitoring physiological parameters and principles of current medical-grade wearable devices and proposes three specific directions of clinical application research: 1) real-time monitoring and predictive warning, 2) disease assessment and differential diagnosis, and 3) rehabilitation training and precision medicine. Finally, the challenges and response strategies of wearable physiological monitoring technology in the biomedical field are discussed, highlighting its clinical application value and clinical application mode to provide helpful reference information for the research of wearable technology-related fields.

    Release date:2021-06-18 04:52 Export PDF Favorites Scan
  • Estimation of lung recruitment characteristics using the static pressure-volume curve of lungs

    Mechanical ventilation is an importmant life-sustaining treatment for patients with acute respiratory distress syndrome. Its clinical outcomes depend on patients’ characteristics of lung recruitment. Estimation of lung recruitment characteristics is valuable for the determination of ventilatory maneurvers and ventilator parameters. There is no easily-used, bedside method to assess lung recruitment characteristics. The present paper proposed a method to estimate lung recruitment characteristics from the static pressure-volume curve of lungs. The method was evaluated by comparing with published experimental data. Results of lung recruitment derived from the presented method were in high agreement with the published data, suggesting that the proposed method is capable to estimate lung recruitment characteristics. Since some advanced ventilators are capable to measure the static pressure-volume curve automatedly, the presented method is potential to be used at bedside, and it is helpful for clinicians to individualize ventilatory manuevers and the correpsonding ventilator parameters.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Optimization of the pseudorandom input signals used for the forced oscillation technique

    The forced oscillation technique (FOT) is an active pulmonary function measurement technique that was applied to identify the mechanical properties of the respiratory system using external excitation signals. FOT commonly includes single frequency sine, pseudorandom and periodic impulse excitation signals. Aiming at preventing the time-domain amplitude overshoot that might exist in the acquisition of combined multi sinusoidal pseudorandom signals, this paper studied the phase optimization of pseudorandom signals. We tried two methods including the random phase combination and time-frequency domain swapping algorithm to solve this problem, and used the crest factor to estimate the effect of optimization. Furthermore, in order to make the pseudorandom signals met the requirement of the respiratory system identification in 4–40 Hz, we compensated the input signals’ amplitudes at the low frequency band (4–18 Hz) according to the frequency-response curve of the oscillation unit. Resuts showed that time-frequency domain swapping algorithm could effectively optimize the phase combination of pseudorandom signals. Moreover, when the amplitudes at low frequencies were compensated, the expected stimulus signals which met the performance requirements were obtained eventually.

    Release date:2017-10-23 02:15 Export PDF Favorites Scan
  • Design and preliminary validation of a ubiquitous and wearable physiological monitoring system

    To achieve continuously physiological monitoring on hospital inpatients, a ubiquitous and wearable physiological monitoring system SensEcho was developed. The whole system consists of three parts: a wearable physiological monitoring unit, a wireless network and communication unit and a central monitoring system. The wearable physiological monitoring unit is an elastic shirt with respiratory inductive plethysmography sensor and textile electrocardiogram (ECG) electrodes embedded in, to collect physiological signals of ECG, respiration and posture/activity continuously and ubiquitously. The wireless network and communication unit is based on WiFi networking technology to transmit data from each physiological monitoring unit to the central monitoring system. A protocol of multiple data re-transmission and data integrity verification was implemented to reduce packet dropouts during the wireless communication. The central monitoring system displays data collected by the wearable system from each inpatient and monitors the status of each patient. An architecture of data server and algorithm server was established, supporting further data mining and analysis for big medical data. The performance of the whole system was validated. Three kinds of tests were conducted: validation of physiological monitoring algorithms, reliability of the monitoring system on volunteers, and reliability of data transmission. The results show that the whole system can achieve good performance in both physiological monitoring and wireless data transmission. The application of this system in clinical settings has the potential to establish a new model for individualized hospital inpatients monitoring, and provide more precision medicine to the patients with information derived from the continuously collected physiological parameters.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content