The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of L1-norm penalty term to avoid over fitting problem. Then, it is solved by the fast iterative shrinkage-thresholding algorithm (FISTA), which updates the variables through a shrinkage threshold operation in each iteration to converge to the global optimal solution. The experimental results show that compared with other methods, this method can improve the accuracy of noise reduction and reconstruction of brain functional network to more than 98%, effectively suppress the noise, and help to better explore the function of human brain in noisy environment.