To design a new suit of instruments for meniscal suture with tondon, and then authenticate their feasibil ity and the therapeutic effect of the new technique. Methods Instruments were developed, including new ones and others which was improved according to the current instruments. From October 2005 to December 2006, 45 patients with meniscal injury were treated by meniscal suture with tendon. There were 29 males and 16 females, aged 17-40 years (mean 28 years). Injury was caused by sports in 33 cases, by traffic accident in 5 cases, by fall ing in 3 case and others in 4 cases. The disease course was 3 days to 6 months (mean 2 months). There were 23 cases accompanying with anterior cruciate l igament injury and 6 cases accompanying with posterior cruciate l igament injury. E-MRI showed 2 cases of degree II and 43 cases of degree III. Arthroscope showed that injury was at medial meniscus in 39 cases and at lateral meniscus in 6 cases. The pre-operationalLysholm score was 53.0 ± 10.3. Autogeneic or xenogenic tendon was made into suture l ine guided by stitch at the two ends. Thetherapeutic effect of the new technique was authenticated by cl inical results, including the change of symptoms and phy sical signs, and by comparing the pre-operational Lysholm score with the post one. Results Nineteen pieces of instruments weredeveloped. All the operation were successful, with no harm to nerves and vessels. The follow-up was 6 months to 24 mo nths (mean15 months). At the last follow-up, all the symptoms disappeared, including pain, swell ing and locking, etc. The Lysholm sc oreafter 6 months of operation was 87.8 ± 9.2, showing statistically significant difference when compared with per-operati on ( P lt; 0.01). Conclusion It is feasible to suture injured menisci with the new instruments and technique. It is an effective way to repair menisci with tendon according to the short-term results.
In order to explore the feasibility of applying magnetic detection electrical impedance tomography (MDEIT) on respiratory monitoring, aiming at the forward problem of magnetic detection electrical impedance tomography, we calculated the electric potential and current density distribution inside the imaging object by using the finite element method. We then got magnetic induction intensity outside the object at the end of exhaling and inhaling according to Biot-Savart's law. The results showed that the magnetic induction intensity at the end of inhaling was 8.875%, less than that at the end of exhaling. By the simulation results, we could understand the difference of magnetic induction intensity value surrounding the lung at the end of exhaling and inhaling due to the change of lung volume and electrical conductivity distribution better. Our research laid the foundation for the late image reconstruction and clinical disease detection.