west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Mengfan" 2 results
  • Influence of the concrete and abstract graphs on N200 and P300 potentials

    Increasing the amplitude of event-related potential is one of the key methods to improve the accuracy of the potential-based brain-computer interface, e.g., P300-based brain-computer interface. The brain-computer interface systems often use symbols or controlled objects as vision stimuli, but what visual stimuli can induce more obvious event-related potential is still unknown. This paper designed three kinds of visual stimuli, i.e., a square, an arrow, and a robot attached with an arrow, to analyze the influence of concreteness degree of the graph on the N200 and P300 potentials, and applied a support vector machine to compare the performance of the brain-computer interface under different stimuli. The results showed that, compared with the square, the robot attached with arrow and the arrow both induced larger N200 potential (P = 1.6 × 10−3, P = 4.2 × 10−2) and longer P300 potential (P = 2.2 × 10−3, P = 1.9 × 10−2) in the frontal area, but the amplitude under the arrow condition is smaller than the one under the robot attached with arrow condition. The robot attached with arrow increased the N200 potential amplitude of the square and arrow from 3.12 μV and 5.19 μV to 7.21 μV (P = 1.6 × 10−3, P = 8.9 × 10−2), and improved the accuracy rate from 59.95%, 61.67% to 74.45% (P = 2.1 × 10−2, P = 1.6 × 10−2), and the information transfer rate from 35.00 bits/min, 35.98 bits/min to 56.71 bits/min (P = 2.6 × 10−2, P = 1.6 × 10−2). This study shows that the concreteness of graphics could affect the N200 potential and the P300 potential. The abstract symbol could represent the meaning and evoke potentials, but the information contained in the concrete robot attached with an arrow is more correlated with the human experience, which is helpful to improve the amplitude. The results may provide new sight in modifying the stimulus interface of the brain-computer interface.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • A TrAdaBoost-based method for detecting multiple subjects’ P300 potentials

    Individual differences of P300 potentials lead to that a large amount of training data must be collected to construct pattern recognition models in P300-based brain-computer interface system, which may cause subjects’ fatigue and degrade the system performance. TrAdaBoost is a method that transfers the knowledge from source area to target area, which improves learning effect in the target area. Our research purposed a TrAdaBoost-based linear discriminant analysis and a TrAdaBoost-based support vector machine to recognize the P300 potentials across multiple subjects. This method first trains two kinds of classifiers separately by using the data deriving from a small amount of data from same subject and a large amount of data from different subjects. Then it combines all the classifiers with different weights. Compared with traditional training methods that use only a small amount of data from same subject or mixed different subjects’ data to directly train, our algorithm improved the accuracies by 19.56% and 22.25% respectively, and improved the information transfer rate of 14.69 bits/min and 15.76 bits/min respectively. The results indicate that the TrAdaBoost-based method has the potential to enhance the generalization ability of brain-computer interface on the individual differences.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content