west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LI Xiaoye" 2 results
  • Biomechanical evaluation of effects of percutaneous cement discoplasty and percutaneous cement interbody fusion on spinal stability

    Objective To investigate the effects of percutaneous cement discoplasty (PCD) and percutaneous cement interbody fusion (PCIF) on spinal stability by in vitro biomechanical tests. Methods Biomechanical test was divided into intact (INT) group, percutaneous lumbar discectomy (PLD) group, PCD group, and PCIF group. Six specimens of L4, 5 (including vertebral bodies and intervertebral discs) from fresh male cadavers were taken to prepare PLD, PCD, and PCIF specimens, respectively. Before treatment and after the above treatments, the MTS multi-degree-of-freedom simulation test system was used to conduct the biomechanical test. The intervertebral height of the specimen was measured before and after the axial loading of 300 N, and the difference was calculated. The range of motion (ROM) and stiffness of the spine in flexion, extension, left/right bending, and left/right rotation under a torque of 7.5 Nm were calculated. Results After axial loading, the change of intervertebral height in PLD group was more significant than that in other three groups (P<0.05). Compared with INT group, the ROM in all directions significantly increased and the stiffness significantly decreased in PLD group (P<0.05). Compared with INT group, the ROM of flexion, extension, and left/right rotation in PCD group significantly increased and the stiffness significantly decreased (P<0.05); compared with PLD group, the ROM of flexion, extension, and left/right bending in PCD group significantly decreased and the stiffness significantly increased (P<0.05). Compared with INT group, ROM of left/right bending in PCIF group significantly decreased and stiffness significantly increased (P<0.05); compared with PLD group, the ROM in all directions significantly decreased and the stiffness significantly increased (P<0.05); compared with PCD group, the ROM of flexion, left/right bending, and left/right rotation significantly decreased and stiffness significantly increased (P<0.05). Conclusion Both PCD and PCIF can provide good biomechanical stability. The former mainly affects the stiffness in flexion, extension, and bending, while the latter is more restrictive on lumbar ROM in all directions, especially in bending and rotation.

    Release date: Export PDF Favorites Scan
  • Experimental study of tetramethylpyrazine-loaded electroconductive hydrogel on angiogenesis and neuroprotection after spinal cord injury

    Objective To explore the mechanisms for repairing spinal cord injury (SCI) with tetramethylpyrazine-loaded electroconductive hydrogel (hereinafter referred to as “TGTP”). Mehtods A total of 72 female Sprague-Dawley rats were randomly divided into 4 groups: sham operation group (group A), SCI group (group B), SCI+electroconductive hydrogel group (group C), and SCI+TGTP group (group D). Only the vertebral plate was removed in group A, while the remaining groups were subjected to a whole transection model of spinal cord with a 2 mm gap in the lesions. The recovery of hindlimb motor function was evaluated by Basso, Beattie, Bresnahan (BBB) score and modified Rivlin-Tator inclined plate test before operation and at 1, 3, 7, 14, and 28 days after operation, respectively. Animals were sacrificed at 7 days and 28 days after modeling. Neovascularisation was observed by immunofluorescence staining of CD31 and the expression levels of angiopoietin 1 (Ang-1) and Tie-2 were assessed by Western blot assay. At 28 days postoperatively, the expression levels of pro-angiogenic related proteins, including platelet-derived growth factor B (PDGF-B), PDGF receptor β (PDGFR-β), vascular endothelial growth factor A (VEGF-A), and VEGF receptor 2 (VEGFR-2), were also assessed by Western blot. The fibrous scar in the injured area was assessed using Masson staining, while neuronal survival was observed through Nissl staining. Furthermore, LFB staining was utilized to detect myelin distribution and regeneration. Immunofluorescence and Western blot assay were employed to evaluate the expression of neurofilament 200 (NF200). Results The hindlimb motor function of rats in each group gradually recovered from the 3rd day after operation. The BBB score and climbing angle in group D were significantly higher than those in group B from 3 to 28 days after operation, and significantly higher than those in group C at 14 days and 28 days after operation (P<0.05). Masson staining showed that the collagen volume fraction in groups B-D were significantly higher than that in group A, and that in group D was significantly lower than that in groups B and C (P<0.05); a small amount of black conductive particles were scattered at the broken end in group D, and the surrounding collagen fibers were less than those in group C. Nissl and LFB staining showed that the structure of neurons and myelin sheath in the injured area of spinal cord in group D was relatively complete and continuous, and the number of Nissl bodies and the positive area of myelin sheath in group D were significantly better than those in groups B and C (P<0.05). NF200 immunofluorescence staining and Western blot assay results showed that the relative expression of NF200 protein in group D was significantly higher than that in groups B and C (P<0.05). CD31 immunofluorescence staining showed that the fluorescence intensity of group D was better than that of groups B and C at 28 days after operation, and tubular or linear neovascularization could be seen. The relative expressions of Ang-1 and Tie-2 proteins in group D were significantly higher than those in groups B and C at 7 and 28 days after operation (P<0.05). The relative expressions of PDGF-B and PDGFR-β proteins in group D were significantly higher than those in groups B and C, and group B was significantly higher than group C at 28 days after operation (P<0.05). The relative expressions of VEGF-A and VEGFR2 proteins in group D were higher than those in groups B and C, showing significant difference when compared with group B (P<0.05), but only the expression of VEGF-A protein was significantly higher than that in group C (P<0.05). There was significant difference only in VEGFR-2 protein between groups B and C (P<0.05). Conclusion TGTP may enhance the revascularization of the injured area and protect the neurons, thus alleviating the injury of spinal cord tissue structure and promoting the recovery of neurological function after SCI in rats.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content