External support stent is a potential means for restricting the deformation and reducing wall stress of the vein graft, thereby improving the long-term patency of the graft in coronary artery bypass surgery. However, there still lacks a theoretical reference for choosing the size of stent based on the diameter of graft. Taking the VEST (venous external support) stent currently used in the clinical practice as the object of study, we constructed three models of VEST stents with different diameters and coupled them respectively to a model of the great saphenous vein graft, and numerically simulated the expansion-contraction process of the vein graft under the constraint of the stents to quantitatively evaluate the influence of stent size on the radial deformation and wall stress of the vein graft. The results showed that while the stent with a small diameter had a high restrictive effect in comparison with larger stents, it led to more severe concentration of wall stress and sharper changes in radial deformation along the axis of the graft, which may have adverse influence on the graft. In order to solve the aforementioned problems, we ameliorated the design of the stent by means of changing the cross-sectional shape of the thick and thin alloy wires from circle into rectangle and square, respectively, while keeping the cross-sectional areas of alloy wires and stent topology unchanged. Further numerical simulations demonstrated that the ameliorated stent evidently reduced the degrees of wall stress concentration and abrupt changes in radial deformation, which may help improve the biomechanical environment of the graft while maintaining the restrictive role of the stent.
The prevalence of cardiovascular disease in our country is increasing, and it has been a big problem affecting the social and economic development. It has been demonstrated that early intervention of cardiovascular risk factors can effectively reduce cardiovascular disease-caused mortality. Therefore, extensive implementation of cardiovascular testing and risk factor screening in the general population is the key to the prevention and treatment of cardiovascular disease. However, the categories of devices available for quick cardiovascular testing are limited, and in particular, many existing devices suffer from various technical problems, such as complex operation, unclear working principle, or large inter-individual variability in measurement accuracy, which lead to an overall low popularity and reliability of cardiovascular testing. In this study, we introduce the non-invasive measurement mechanisms and relevant technical progresses for several typical cardiovascular indices (e.g., peripheral/central arterial blood pressure, and arterial stiffness), with emphasis on describing the applications of biomechanical modeling and simulation in mechanism verification, analysis of influential factors, and technical improvement/innovation.