west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LIGen" 2 results
  • EXPERIMENTAL STUDIES ON EFFECTS OF SALIDROSIDE/COLLAGEN/ POLYCAPROLACTONE NERVE GUIDE CONDUITS FOR REPAIRING SCIATIC NERVE DEFECT IN RATS

    ObjectiveTo fabricate salidroside/collagen/polycaprolactone (PCL) nerve conduit composite and to investigate the effect of composite nerve conduits for repairing sciatic nerve defect. MethodsThe salidroside microspheres were prepared by W/O/W method, and the sustained release rate of microspheres was detected. The microspheres containing 10, 20, and 40 μg salidroside were mixed with collagen to prepare the nerve conduit core layer by freeze-drying method. The shell layer of collagen/PCL scaffold material was fabricated by electrospinning technology. The genipin cross-linked salidroside/collagen/PCL nerve conduit composite was prepared. The structure of nerve conduit was observed before and after cross-linked by scanning electron microscope. Thirty-eight Wistar rats were used to make the right sciatic nerve defect model of 15 mm in length, and randomly divided into groups A, B, C, D (n=9), and group E (n=2), then defect was repaired with the collagen/PCL conduit in group A, autologous nerve in group E, the 10, 20, and 40 μg/mL salidroside/collagen/PCL conduit in groups B, C, and D, respectively. The survival of rats was observed. The sciatic functional index (SFI) was evaluated at 1, 3, and 6 months after operation. At 6 months, the tissue of defect area was harvested for the general, electrophysiology, histological, and immunohistochemical[S-100 and peripheral myelin protein 0(P0)] staining observations. ResultsSalidroside microspheres showed burst release at 3 days, and then it tended to be stable at 13 days and lasted for 16 days, with a cumulative release rate of 76.59%. SEM showed that the disordered fiber of nerve conduit shell layer after crosslinking became conglutination, shrinkage, and density, and had void. The channels of core layer were clearly visible before and after crosslinking. The rats had no infection or death after operation. The SFI of group E was significantly higher than that of groups A, B, C, and D at 1, 3, and 6 months (P<0.05); it was significantly higher in groups B, C, and D than group A (P<0.05), but no significant difference was found among groups B, C, and D at 1 month (P>0.05); there was no significant difference in SFI among groups A, B, C, and D at 3 months (P>0.05); SFI was significantly higher in group C than groups A, B, and D and in groups A and B than group D (P<0.05), but no significant difference between groups A and B (P>0.05) at 6 months. In addition, no significant difference was shown among different time points in the other groups (P>0.05) except groups C and E at 1, 3, and 6 months (P<0.05). The general observation showed that good connection with the thick nerve in groups B and C, and connection with the fine nerves in groups A and D. The conduit materials obviously degraded. Nerve electrophysiological examination showed that the latency/conduction velocity of groups C and E were significantly lower than those of groups A, B, and D (P<0.05), but difference was not significant between groups C and E, and among groups A, B, and D (P>0.05). The histological observation showed that the nerve fiber tissue of groups B, C, and E was obviously more than that of groups A and D, and group C was similar to group E in the nerve fiber arrangement, and the core layer material of each group was completely degraded. Immunohistochemical staining showed that S-100 and P0 proteins expressed in all groups; and the expression level of groups B, C, and E was significantly higher than that of groups A and D, and gradually increased (P<0.05); difference in S-100 expression level was not significant between groups A and D (P>0.05), and P0 expression level of group A was significantly lower than that of group D (P<0.05). ConclusionSalidroside/collagen/PCL nerve conduit can promote sciatic nerve defect repair.

    Release date: Export PDF Favorites Scan
  • Experimental Detection Study on Cerebral Hemorrhage in Rabbits Based on Magnetic Induction Phase Shift Spectroscopy Under the Feature Band

    This study was aimed to improve the sensitivity of magnetic induction phase shift detection system for cerebral hemorrhage. In the study, a cerebral hemorrhage model with 13 rabbits was established by injection of autologous blood and the cerebral hemorrhage was detected by utilizing magnetic induction phase shift spectroscopy (MIPSS) detection method under the feature band. Sixty five groups of phase shift spectroscopy data were obtained. According to the characteristics of cerebral hemorrhage phase shift spectroscopy under the feature band, an effective method, B-F distribution, to diagnose the severity of cerebral hemorrhage was designed. The results showed that using MIPSS detection method under feature band, the phase shift obviously growed with increase of injection volume of autologous blood, and the phase shift induced by a 3-mL injection reached-7.750 3°±1.420 4°. B-F distribution could effectively diagnose the severity of cerebral hemorrhage. It can be concluded that the sensitivity of the cerebral hemorrhage magnetic induction detection system is improved by one order of magnitude with the MIPSS detection method under the feature band.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content