Objective To investigate the expression change of endogenous Spastin after sciatic nerve injury in rats, and to discuss the role and significance in the peripheral nerve regeneration. Methods Thirty-six adult male Sprague Dawley rats weighing 180–220 g were randomly divided into the experimental group (n=30) and the control group (n=6). Sciatic nerve compression damage model was established in the experimental group, and the sciatic nerve was only exposed in the control group. The L4-6 spinal cord tissue was obtained to detect Spastin mRNA and protein levels by real-time fluorescence quantitative PCR and Western blot at 1, 3, 7, 14, and 28 days after operation in the experimental group (n=6) and at 7 days in the control group. Meanwhile, the sciatic nerve at 5 mm distal to the injured site was obtained to observe the ultrastructure of the distal axon by transmission electron microscope (TEM). Results The expression trends of Spastin gene and Spastin protein in L4-6 spinal cord tissue of 2 groups were basically identical. In the experimental group, the expressions of Spastin gene and protein decreased at the beginning, and then increased; the expressions reduced to the minimum at 7 days after operation, and came back to the initial level at 28 days. The expression levels of Spastin mRNA and protein at 3, 7, and 14 days were significantly lower in the experimental group than the control group (P<0.05), but no significant difference was noted between 2 groups at 1 and 28 days (P>0.05). The expression levels of Spastin mRNA and protein at 3, 7, and 14 days were significantly lower than those at 1 and 28 days in the experimental group (P<0.05), but no significant difference was noted between at 1 day and 28 days (P>0.05). At 1, 3, and 7 days after operation, the myelin damage was observed by TEM; at 14 days, there were regenerating Schwann cells; at 28 days, a large number of myelinated nerve fibers were seen, which were closed to normal form. Conclusion In the process of sciatic nerve regeneration after injury, a complex succession of changes take place in the expression of endogenous Spastin protein in rats, indicating that Spastin protein plays an important role in the process.
Objective To investigate the feasibility of the anastomosis of the anterior branch of obturator nerve and the muscular branch of femoral nerve. Methods Five fresh frozen cadavers, including 3 males and 2 females, were included. Both of the obturator nerve, femoral nerve and their branches were dissected, then their routes and anatomical positions were observed. The diameter and the number of myelinated nerve fiber of the anterior branch of obturator nerve and femoral nerve muscular branches were measured, as well as the overlap distance between them. Results The diameter of myelinated nerve fiber of the anterior branch of obturator nerve was (3.80±1.22) mm; the number of myelinated nerve fiber was 11 358±800. The diameters of the rectus femoris branch and the medial femoral branch were (1.60±0.54) mm and (2.20±0.66) mm, respectively; the number of myelinated nerve fiber were 4 961±655 and 6 666±466. Both the diameter and number of myelinated nerve fiber were close to the anterior branch of obturator nerve. The anterior branch of obturator nerve could be directly anastomosed with each nerve branch of femoral nerve in nontension, and the overlap distance was about 30 mm. Conclusion It is feasible to repair the femoral nerve by transposed the anterior branch of obturator nerve and anastomosed with the femoral nerve muscular branches. And the rectus femoris branch and the medial femoral branch should be taken as the recipient nerve.
Objective To observe the structural changes of urinary center and the expression of Bcl-2 after conus medullaris injury in rats brain so as to explore the possible influence factors of degeneration in brain. Methods Thirty-six adult Sprague-Dawley rats were randomly divided into experimental group (n=30) and control group (n=6). In the experimental group, the conus medullaris injury model was established by cutting off the spinal nerve below L4, and no treatment was done in the control group. The modeling operations in the experimental group were successful, and 2 rats died at 3 months and 5 months after modeling operation respectively, which may be caused by renal failure or urinary tract infection. In the experimental group, 6, 6, 6, 5, and 5 rats were killed at 1 day, 1 week, and 1, 3, 6 months after operation respectively, and 1 rat was killed at each time point in the control group. The dorsolateral tissue of the pontine tegmentum was harvested to perform HE staining and Bcl-2 immunohistochemical SP staining. Results HE staining showed that there was no obvious difference between the experimental group and the control group at 1 day after operation, the neurons were densely packed, arranged neatly, and the nucleoli were clear; at 1 week, the space between the neurons in the experimental group were slightly widened; at 1 month, nucleus retraction in some neurons happened in the experimental group; at 3 and 6 months, the nuclei in the experimental group were more and more condensed, and even some cells disappeared. Bcl-2 immunohistochemical SP staining showed that the expression of Bcl-2 in the control group was weakly positive. The positive expression of Bcl-2 was found at 1 day after operation in the experimental group; the positive expression of Bcl-2 at 7 days after operation was significantly higher than that in the control group, and reached the peak; the positive expression of Bcl-2 decreased gradually at 1, 3, and 6 months after modeling operation, but it was still higher than that of the control group. Conclusion The urinary center appears structure degeneration and necrocytosis after conus medullaris injury in rats brain. The elevated expression of Bcl-2 may be associated with brain tissue repair and function remodeling.
ObjectiveTo investigate the effects of exosomes from adipose-derived stem cells (ADSCs) on peripheral nerve regeneration, and to find a new treatment for peripheral nerve injury. MethodsThirty-six adult Sprague Dawley (SD) rats (male or female, weighing 220-240 g) were randomly divided into 3 groups (n=12). Group A was the control group; group B was sciatic nerve injury group; group C was sciatic nerve injury combined with exosomes from ADSCs treatment group. The sciatic nerve was only exposed without injury in group A, and the sciatic nerve crush injury model was prepared in groups B and C. The SD rats in groups A and B were injected with PBS solution of 200 μL via tail veins; the SD rats in group C were injected with pure PBS solution of 200 μL containing 100 μg exosomes from ADSCs, once a week and injected for 12 weeks. At 1 week after the end of the injection, the rats were killed and the sciatic nerves were taken at the part of injury. The sciatic nerve fiber bundles were observed by HE staining; the SCs apoptosis of the sciatic nerve tissue were detected by TUNEL staining; the ultrastructure and SCs autophagy of the sciatic nerve were observed by transmission electron microscope. ResultsGross observation showed that there was no obvious abnormality in the injured limbs of group A, but there were the injured limbs paralysis and muscle atrophy in groups B and C, and the degree of paralysis and muscle atrophy in group C were lighter than those in group B. HE staining showed that the perineurium of group A was regular; the perineurium of group B was irregular, and there were a lot of cell-free structures and tissue fragments in group B; the perineurium of group C was more complete, and significantly well than that of group B. TUNEL staining showed that the SCs apoptosis was significantly increased in groups B and C than in group A, in group B than in group C (P<0.01). Transmission electron microscope observation showed that the SCs autophagosomes in groups B and C were significantly increased than those in group A, but the autophagosomes in group C were significantly lower than those in group B. ConclusionThe exosomes from ADSCs can promote the peripheral nerve regeneration. The mechanism may be related to reducing SCs apoptosis, inhibiting SCs autophagy, and reducing nerve Wallerian degeneration.
ObjectiveTo compare the biomechanical difference between petal-shaped poly-axial locking plate and tension band wire cerclage in fixing star-shaped 6-part patellar fractures in cadaver model, and provide the experimental data for clinical use.MethodsThe paired 12 knee specimens from 6 human cadavers were randomly divided into 2 groups (the control group and the test group) after a star-shaped 6-part patellar fracture model was established. The specimens were weighted, and the control group was fixed with tension band wire cerclage and the test group was fixed with petal-shaped poly-axial locking plate. The specimens were connected to CMT5105 biomechanics test machine by a customized fixture, the total fracture gap of patellar fracture blocks was measured before testing. The knee extensor load test was performed to record the extensor load of knees at 90° flexion to extension. Then the anti gravity physiological knee extension process at 90° flexion was stimulated according to the knee extensor load. The cyclic times until failure and the total fracture gap of patellar fracture blocks after failure were recorded.ResultsThe specimens weight and the total fracture gap of patellar fracture blocks before testing between 2 groups had no significant difference (t=0.410, P=0.690; t=0.650, P=0.530). In the biomechanical test, there was no significant difference of knee extension load between 2 groups (t=0.490, P=0.638). The total fracture gap after failure in test group was significantly smaller than that in control group (t=3.026, P=0.013), and the cyclic times until failure in test group was significantly more than that in control group (t=2.277, P=0.046). The failure reasons in control group were all the wires slipped off the Kirschner wires, while the failure reasons in test group were the screws pulled out from the upper pole in 5 cases (83.3%) and from the lower pole in 1 case (16.7%).ConclusionThe petal-shaped poly-axial locking plate has better biomechanical stiffness to fix the star-shaped 6-part patellar fractures when compared with tension band wire cerclage method. However, this type of fracture is a serious comminuted type, and the early excessive activity still carries the risk of displacement.