west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LINHaibin" 2 results
  • DIGITAL DESIGN OF STANDARD PARTS DATABASE FOR PROXIMAL TIBIA FRACTURES TREATED WITH PLATING VIA THREE-DIMENSIONAL PRINTING

    ObjectiveTo explore the method and feasibility of digital internal fixation for proximal tibia fractures using standard parts database and three-dimensional (3D) printing technology. MethodsTen adult lower extremity specimens were selected to take continuously thin-layer scanning. After Dicom image was imported into the Mimics software, the model of Schatzker Ⅱ-VI types proximal tibia fracture was established, 2 cases each type. The virtual internal fixation was performed with plate and screw from standard parts database. The pilot hole of the navigation module design was printed by 3D printing technique. The plate and screw were inserted by the navigation module. X-ray film and CT were taken postoperatively to observe the position. Thirty patients with proximal tibia fracture underwent digital internal fixation using standard parts database and 3D printing technology (study group), and another 30 patients underwent traditional open reduction and internal fixation (control group). There was no significant difference in sex, age, side, causes, fracture classification, associated injury, and course of disease between 2 groups (P>0.05). The preparative time, incision length, fracture healing time, operation time, and intraoperative blood loss were recorded. Follow up of imaging evaluation, clinical efficacy was evaluated by MacNab criteria. ResultsThe navigation models were designed to fit the bony structure of proximal tibia and to guide implant insertion. The parameters of orientation, length, diameter, and angle were consistent with the preoperative plan. No statistically significant difference was found in the preparative times of pre-operation between 2 groups (t=1.393, P=0.169). The incision length, wound healing time, blood loss, operation time, and the cost of treatment in study group were significantly less than those in control group (P<0.05). All patients were followed up 12-16 months (mean, 13.5 months). The fracture healing time of study group was significantly shorter than that of control group (t=4.070, P=0.000). At 12 months postoperatively, there was no significant difference in the efficacy based on MacNab criteria between 2 groups (U=377.000, P=0.238). ConclusionDigital internal fixation for proximal tibia fractures using standard parts database and 3D printing technology has the advantages of short process, less blood loss, high safety and rapid fracture healing.

    Release date: Export PDF Favorites Scan
  • Clinical application of accurate placement of lumbar pedicle screws using three-dimensional printing navigational templates under Quadrant system

    Objective To explore the feasibility and the effectiveness of the accurate placement of lumbar pedicle screws using three-dimensional (3D) printing navigational templates in Quadrant minimally invasive system. Methods The L1-5 spines of 12 adult cadavers were scanned using CT. The 3D models of the lumbar spines were established. The screw trajectory was designed to pass through the central axis of the pedicle by using Mimics software. The navigational template was designed and 3D-printed according to the bony surface where the soft tissues could be removed. The placed screws were scanned using CT to create the 3D model again after operation. The 3D models of the designed trajectory and the placed screws were registered to evaluate the placed screws coincidence rate. Between November 2014 and November 2015, 31 patients with lumbar instability accepted surgery assisted with 3D-printing navigation module under Quadrant minimally invasive system. There were 14 males and 17 females, aged from 42 to 60 years, with an average of 45.2 years. The disease duration was 6-13 months (mean, 8.8 months). Single segment was involved in 15 cases, two segments in 13 cases, and three segments in 3 cases. Preoperative visual analogue scale (VAS) was 7.59±1.04; Oswestry disability index (ODI) was 76.21±5.82; and the Japanese Orthopaedic Association (JOA) score was 9.21±1.64. Results A total of 120 screws were placed in 12 cadavers specimens. The coincidence rate of placed screw was 100%. A total of 162 screws were implanted in 31 patients. The operation time was 65-147 minutes (mean, 102.23 minutes); the intraoperative blood loss was 50-116 mL (mean, 78.20 mL); and the intraoperative radiation exposure time was 8-54 seconds (mean, 42 seconds). At 3-7 days after operation, CT showed that the coincidence rate of the placed screws was 98.15% (159/162). At 4 weeks after operation, VAS, ODI, and JOA score were 2.24±0.80, 29.17±2.50, and 23.43±1.14 respectively, showing significant differences when compared with preoperative ones (t=14.842,P=0.006;t=36.927,P=0.002;t=–36.031,P=0.001). Thirty-one patients were followed up 8-24 months (mean, 18.7 months). All incision healed by first intention, and no complication occurred. During the follow-up, X-ray film and CT showed that pedicle screw was accurately placed without loosening or breakage, and with good fusion of intervertebral bone graft. Conclusion 3D-printing navigational templates in Quadrant minimally invasive system can help lumbar surgery gain minimal invasion, less radiation, and accurate placement.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content