west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LIU Deng" 2 results
  • The sample size calculation for artificial intelligence diagnosis of contrast-enhanced ultrasound based on sensitivity and specificity

    Sample size calculation is an important factor to evaluate the reliability of the diagnostic test. In this paper, a case study of the clinical diagnostic test of artificial intelligence for identification of liver contrast-enhanced ultrasound was performed to conduct two-category and multi-categories studies. Based on sensitivity and specificity, the sample size was then estimated in combination with the statistical characteristics of disease incidence, test level and one/two-sided test. Eventually, the sample size was corrected by integrating the factors of the proportion of training/test dataset and the dropout rate of cases in the medical image recognition system. Moreover, the application of Sample Size Calculator, MedCalc, PASS, and other software can accelerate sample size calculation and reduce the amount of labor.

    Release date:2021-04-23 04:04 Export PDF Favorites Scan
  • Multi-classification prediction model of lung cancer tumor mutation burden based on residual network

    Medical studies have found that tumor mutation burden (TMB) is positively correlated with the efficacy of immunotherapy for non-small cell lung cancer (NSCLC), and TMB value can be used to predict the efficacy of targeted therapy and chemotherapy. However, the calculation of TMB value mainly depends on the whole exon sequencing (WES) technology, which usually costs too much time and expenses. To deal with above problem, this paper studies the correlation between TMB and slice images by taking advantage of digital pathological slices commonly used in clinic and then predicts the patient TMB level accordingly. This paper proposes a deep learning model (RCA-MSAG) based on residual coordinate attention (RCA) structure and combined with multi-scale attention guidance (MSAG) module. The model takes ResNet-50 as the basic model and integrates coordinate attention (CA) into bottleneck module to capture the direction-aware and position-sensitive information, which makes the model able to locate and identify the interesting positions more accurately. And then, MSAG module is embedded into the network, which makes the model able to extract the deep features of lung cancer pathological sections and the interactive information between channels. The cancer genome map (TCGA) open dataset is adopted in the experiment, which consists of 200 pathological sections of lung adenocarcinoma, including 80 data samples with high TMB value, 77 data samples with medium TMB value and 43 data samples with low TMB value. Experimental results demonstrate that the accuracy, precision, recall and F1 score of the proposed model are 96.2%, 96.4%, 96.2% and 96.3%, respectively, which are superior to the existing mainstream deep learning models. The model proposed in this paper can promote clinical auxiliary diagnosis and has certain theoretical guiding significance for TMB prediction.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content