【Abstract】 Objective To investigate the impact of dermal papillary cells on vascularization of tissue engineered skinsubstitutes consisting of epidermal stem cells and allogeneic acellular dermal matrix. Methods Human foreskins from routinecircumcisions were collected to separate epidermal cells by using dispase with trypsogen. Collagen type IV was used to isolateepidermal stem cells from the 2nd and 3rd passage keratinocytes. Dermal papilla was isolated by the digestion method of collagenaseI from fetus scalp and cultured in routine fibroblast medium. Tissue engineered skin substitutes were reconstructed by seedingepidermal stem cells on the papillary side of allogeneic acellular dermis with (the experimental group) or without (the controlgroup) seeding dermal papillary cells on the reticular side. The two kinds of composite skin substitutes were employed to cover skindefects (1 cm × 1 cm in size) on the back of the BALB/C-nu nude mice (n=30). The grafting survival rate was recorded 2 weeks aftergrafting. HE staining and immunohistochemistry method were employed to determine the expression of CD31 and calculate themicrovessel density at 2 and 4 weeks after grafting. Results Those adhesion cells by collagen type IV coexpressed Keratin 19 andβ1 integrin, indicating that the cells were epidermal stem cells. The cultivated dermal papillary cells were identified by expressinghigh levels of α-smooth muscle actin. The grafting survival rate was significantly higher in experimental group (28/30, 93.3%), thanthat in control group (24/30, 80.0%). HE staining showed that the epithelial layer in experimental group was 12-layered with largeepithelial cells in the grafted composite skin, and that the epithelial layer in control group was 4-6-layered with small epithelial cells.At 2 and 4 weeks after grafting, the microvessel density was (38.56 ± 2.49)/mm2 and (49.12 ± 2.39)/mm2 in experimental group andwas (25.16 ± 3.73)/mm2 and (36.26 ± 3.24)/mm2 in control group respectively, showing significant differences between 2 groups(P lt; 0.01). Conclusion Addition of dermal papillary cells to the tissue engineered skin substitutes can enhance vascularization,which promotes epidermis formation and improves the grafting survival rate.