west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "LIUXiaoheng" 5 results
  • Advances in Research on Reendothelialization after Intervention in Artery

    Coronary heart disease is a kind of heart disease that is caused by atherosclerosis.The lipid deposition in the vessel wall results in occlusion of coronary artery and stenosis, which could induce myocardial ischemia and oxygen deficiency. Intervention therapies like percutaneous coronary intervention (PCI) and coronary stent improve myocardial perfusion using catheter angioplasty to reduce stenosis and occlusion of coronary artery lumen. Accordingly, intervention therapies are widely applied in clinic to treat ischemic cardiovascular disease, arterial intima hyperplasia and other heart diseases, which could save the patients′ life rapidly and effectively. However, these interventions also damage the original endothelium, promote acute and subacute thrombosis and intimal hyperplasia, and thus induce in stent restenosis (ISR) eventually. Studies indicated that the rapid reendothelialization of damaged section determined postoperative effects. In this review, reendothelialization of implants after intervention therapy is discussed, including the resource of cells contributed on injured artery, the influences of implanted stents on hemodynamic, and the effects of damaged degree on reendothelialization.

    Release date: Export PDF Favorites Scan
  • Integrins Mediate the Migration of HepG2 Cells Induced by Low Shear Stress

    Low shear stress is a component of the tumor microenvironment in vivo and plays a key role in regulating cancer cell migration and invasion. The integrin, as a mechano-sensors mediating and integrating mechanical and chemical signals, induce the adhesion between cells and extracellular matrix (ECM). The purpose of this study is to investigate the effect of low shear stress(1.4 dyn/cm2)on the migration of HepG2 cells and the expression of integrin. Scratch wound migration assay was performed to examine the effect of low shear stress on the migration of HepG2 cells at 0 h, 1 h, 2 h and 4 h, respectively. F-actin staining was used to detect the expression of F-actin in HepG2 cells treated with low shear stress at 2 h and 4 h. Western blot analysis was carried out to determine the effect of low shear stress on the expression of integrin at different durations. The results showed that the migrated distance of HepG2 cells and the expression of F-actin increased significantly compared with the controls. The integrin α subunits showed a different time-dependent expression, suggesting that various subunits of integrin exhibit different effects in low shear stress regulating cancer cells migration.

    Release date: Export PDF Favorites Scan
  • Effect of Fluid Shear Stress on the Cellular Morphology and Tight Junction of Laryngeal Squamous Carcinoma Hep2 Cells

    This paper is aimed to investigate the effect of fluid shear stress on the tight junction of laryngeal squamous carcinoma (Hep2) cells and to explore the potential molecular mechanism. Hep2 cells were selected and subjected to the fluid shear stress of 1.4 dyn/cm2 for different time, respectively. The morphological changes of Hep2 cells under shear stress were observed using inverted microscope. The cell-cell junctions were examined by transmission electron microscope (TEM). The expressions of tight junction proteins (including Occludin, Claudin-5 and ZO-1) and the distribution of Claudin-5 were examined by Western blot assay and laser scanning confocal microscope, respectively. The results indicated that Hep2 cells turned to spindle-like shapes after exposed to shear stress, and showed the trend of the recovering to original shapes when the shear stress was cancelled. The cell-cell junctions were tight under the shear flow condition, and the permeability was reduced under the condition of 1.4 dyn/cm2 shear flow. The expressions of tight junction proteins were enhanced with increased duration of shear flow, but reduced after removing shear flow. The result of Claudin-5 expression by immufluorescence assay was consistent with that by Western blot. The Claudin-5 mainly distributed in the cytoplasm under static condition, while it located at the intercellular after shear flow stimulation, and it appeared intercellular and cytoplasm after stopping shear flow stimulation. Therefore, it can be concluded that shear stress changes the morphology of laryngeal squamous carcinoma Hep2 cells, and upregulates the tight junction.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Effect of Gold (Au) Nanoparticles Modified by Surface Chemistry on the Proliferation and Migration of Hepatocellular Carcinoma Cells in Vitro

    Due to the good tumor-targeting and excellent biocompatibility, the drug-loading nanoparticles (NPs) has been widely applied in the diagnosis and treatment of cancer. However, after the NPs are recognized and internalized by cancer cells, the effects of NPs on cell migration behavior were unclear. In the present study, the self-assembly techniques (SAMs) was used to modify gold (Au) nanoparticles (Au NPs) with different chemical functional groups (CH3, OH, COOH and NH2) as model NPs. The dispersion of these groups in solution and the distribution in cells were studied by transmission electron microscope (TEM), respectively, and the proliferation was examined by MTT assay in vitro. The wound-healing and the Transwell assay were used to examine the effect of internalized Au-NPs on HepG2 cells migration. The results showed that different Au-NPs mainly distributed at the edge of the vesicle membrane and the gap between cells. The Au-NPs resulted in decreased cell viability in a concentration-depended manner. In addition, the results of wound-healing and Transwells assay indicated that the internalization of the NH2-NPs and OH-NPs would inhibit cell migration compared with those in the control group.

    Release date: Export PDF Favorites Scan
  • Influence of Tumor Microenvironment of Hepatocellular Carcinoma on the Proliferation of Vascular Endothelial Cells and Vascular Angiogenesis Ability

    To study the potential molecular mechanism of tumor angiogenesis in its microenvironment, we investigated the effects of HepG2 conditioned medium on the proliferation of vascular endothelial cell and vascular angiogenesis in our laboratory. Human umbilical vein endothelial EA.hy926 cells were co-cultured with HepG2 conditioned medium in vitro. The proliferation and the tubulogenesis of EA.hy926 cells were detected by teramethylazo salt azole (MTT) and tube formation assay, respectively. The results showed that the survival rate of the EA.hy926 cells was significantly increased under the co-culture condition. HepG2 conditioned medium also enhanced the angiogenesis ability of EA.hy926 cells. In addition, the expressions of intracellular VEGF and extracellular VEGFR (Flk-1) were regulated upward in a time-dependent manner. In conclusion, the proliferation of vascular endothelial cells and Vascula angiogenesis were improved under the condition of indirect co-culture.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content