Objective To construct and screen neurite outgrowth inhibitory 66-samll interfering RNA (nogo66-siRNA) eukaryotic expression vectors of effective interference, so as to lay a foundation for further reconstruction of related viral vector. Methods The nogo66-siRNA fragments were designed and cloned into pGenesil-1.1, 4 plasmids of pGenesil-nogo66-siRNA-1, pGenesil-nogo66-siRNA-2, pGenesil-nogo66-siRNA-hk, and pGenesil-nogo66-siRNA-kb were obtained, sequenced and identified, then were transfected into C6 cell l ine. The transfection efficiency was measured by fluorescence microscope. RT-PCR and Western blot were used to detect the expression of nogo gene and select the plasmid of effective interference. Results DNA sequencing results showed interference sequences were correct. The bands of 800 bp and 4.3 kb were detected when pGenesil-nogo66-siRNAs were digested by Kpn I /Xho I. The expression of green fluorescent protein could be detected under fluorescence microscope, and the transfection efficiency was about 73%. RT-PCR and Western blot results showed that compared to non-transfected cells, the transfection of pGenesil-nogo66-siRNA-1 made the expression of nogo gene decl ine 22% and the expression of nogo protein decl ine 73%; the transfection of pGenesil-nogo66-siRNA-2 made the expression of nogo gene decl ine 28% and the expression of nogo protein decl ine 78%; the differences were significant (P lt; 0.05); and the transfection of pGenesil-nogo66-siRNA-hk and pGenesil-nogo66- siRNA-kb did not make the expressions of nogo gene and nogo protein decrease significantly (P gt; 0.05). Conclusion Nogo66-siRNA eukaryotic expression vector is successfully constructed, it lays an experimental foundation for repair of spinal cord injury.