Objective To compare the postoperative anorectal pressure after procedure for prolapse and hemorrhoids (PPH) and Milligan-Morgan hemorrhoidectomy (MMH) in treatment of patients with mixed hemorrhoid of Ⅲ-degree. Methods In total of 112 patients with mixed hemorrhoid of Ⅲ-degree who underwent PPH (n=60) or MMH (n=52) in The First Affiliated Hospital of Xinjiang Medical University between March 2014 to March 2015 were prospectively enrolled, the type of surgery was according to patients’ individual choice. In 6 months after operation, all patients under-went the examination of anorectal manometry which including rectal anal inhibitory reflex, rectal resting pressure, anal resting pressure, maximal anal contractive pressure, and anal canal length of high pressure belt. Results In 6 months after operation, the positive rate of rectal anal inhibitory reflex 〔88.3% (53/60) vs. 61.5% (32/52)〕 , anal resting pressure 〔(56.42± 2.25) mm Hg vs. (46.31±2.58) mm Hg〕, and anal canal length of high pressure belt 〔(3.35±0.12) cm vs. (2.29±0.23) cm〕 of PPH group were all significantly higher than those of MMH group (P<0.05), but there was no statistical significance between PPH group and MMH group in rectal resting pressure 〔(5.51±1.26) mm Hg vs. (5.39±1.85) mm Hg〕 and maximal anal contractive pressure 〔(156.64±9.78) mm Hg vs. (155.32±8.53) mm Hg〕, P>0.05. Conclusion PPH and MMH are all effective to treat mixed hemorrhoids of Ⅲ-degree, but PPH is more positive in protection of anal function.
ObjectiveTo study the possibility of the C17.2 neural stem cells (NSCs) differentiating into neural cells induced by serum-free condition medium of olfactory ensheathing cells (OECs) and to detect the cell viability of the differentiated cells. MethodsOECs were isloated and cultured from the olfactory bulbs of 3-day-old postnatal mouse to prepare serum-free condition medium of OECs. After C17.2 NSCs were cultured with H-DMEM/F12 medium containing 15% FBS and the cell fusion reached 80%, the 3rd passage cells were induced by serum-free condition medium of OECs in the experimental group, by H-DMEM/F12 in the control group, and non-induced C17.2 NSCs served as the blank control group. The growth condition of cells was observed with inverted microscope. After 5 days, the immunofluorescence staining[microtubule-associated protein 2 (MAP-2) and β-tubulin-Ⅲ] and Western blot (Nestin, β-tubulin-Ⅲ, and MAP-2) were carried out to identify the neural cells derived from NSCs. The cell viabilities were measured by MTT assay and the quantity of lactate dehydrogenase (LDH) release in the medium. ResultsIn the experimental group, the C17.2 NSCs bodies began to contract at 24 hours after induction, and the differentiated cells increased obviously with long synapse at 3 days after induction; in the control group, the cell morphology showed no obvious change at 24 hours, cell body shrinkage, condensation of nuclear chromatin, and lysis were observed at 3 days. The immunofluorescence staining showed that β-tubulin-Ⅲ and MAP-2 of C17.2 NSCs were positive at 5 days after induction, and Western blot suggested that the expression of Nestin protein declined significantly and the expressions of β-tubulin-Ⅲ and MAP-2 protein were increased in the experimental group, showing significant differences when compared with those in the control group and blank control group (P<0.05). The LDH release and the cell viability were 130.60%±6.86% and 62.20%±3.82% in the experimental group, and were 178.20%±5.44% and 18.00%±3.83% in the control group respectively, showing significant differences between 2 groups (P<0.05). The LDH release and the cell viability of experimental group and control group were significantly lower than those of blank control group (100%) (P<0.05). ConclusionNeurotrophic factors from OECs play an important role in inducing C17.2 NSCs differentiation into neural cells and keeping the viability of differentiated cells after induction.
ObjectiveTo evaluate the effect of leucocyte- and platelet-rich plasma (L-PRP) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in treating avascular necrosis of the femoral head (ANFH) in rabbits. MethodsTwenty-four New Zealand white rabbits (4-6 months old, both genders, weighing 2.0-3.0 kg) were used for the establishment of bilateral ANFH models and divided into 4 groups (n=6). BMSCs were isolated from the bone marrow of iliac crest, cultured and identified. L-PRP was prepared by Landesberg method. Core decompression only (group A), core decompression and L-PRP implantation (group B), core decompression and BMSCs implantation (group C), and core decompression and implantation of BMSCs and L-PRP were performed in 4 groups. To evaluate bone formation and remodeling of the defects, X-ray photography was taken at 2, 4, and 8 weeks postoperatively. The modified Lane-Sandhu scoring system was used to evaluate the bone formation. Two rabbits were sacrificed at 2, 4, 8 weeks after operation to harvest the specimens for histological observation, new blood vessel count and new bone area ratio. ResultsThe observations of radiology and histology displayed different degrees of bone regeneration at bone defect sites in each group. At 2, 4, and 8 weeks postoperatively, the results of Lane-Sandhu X-ray photography scoring, new blood vessel count, and new bone area ratio showed that groups C and D were significantly better than groups A and B, group D was significantly better than group C. and group B was significantly better than group A (P<0.05). ConclusionThese findings demonstrate that L-PRP can promote osteogenic differentiation of BMSCs in treating ANFH in rabbits, and core decompression associated with BMSCs and L-PRP is an effective and feasible method to treat ANFH.