Large Language Models (LLMs) are highly sophisticated deep learning models pre-trained on massive datasets, with ChatGPT representing a prominent application of LLMs in the field of generative models. Since the release of ChatGPT at the end of 2022, generative chatbots have become widely employed across various medical disciplines. As a crucial discipline guiding clinical practices, the usage of generative chatbots like ChatGPT in Evidence-Based Medicine (EBM) is gradually increasing. However, the potential, challenges, and intricacies of their application in the domain of EBM remain unclear. This paper aims to explore and discuss the prospects, challenges, and considerations associated with the application of ChatGPT in the field of EBM through a review of relevant literature. The discussion spans four aspects: evidence generation, synthesis, assessment, dissemination, and implementation, providing researchers with insights into the latest developments and future research suggestions.