Objective To observe the effect of melatonin (MT) on retinal apoptosis in rats with ischemia-reperfusion injury (RIRI). Methods A total of 54 male healthy Sprague-Dawley adult rats were randomly divided into the normal control (CON) group (6 rats), RIRI group (24 rats) and MT group (24 rats). The rats of RIRI and MT group were induced using suture-occluded methods to establish RIRI model. The rats of MT group were injected with MT in the left carotid artery 30 minutes after RIRI, and RIRI group was injected with the same amount of saline. On 6, 24 hours and 3, 7 days after RIRI, the morphological changes of retina were evaluated by hematoxylin and eosin (HE) staining; the effects of MT on retinal cell apoptosis and Nrf2, HO-1 proteins were examined by immunohistochemistry staining. The correlation between active Caspase-3 and Nrf2 protein, active Caspase-3 and HO-1 protein in MT group were analyzed by linear regression analysis. Results HE staining results showed that the morphology of retinal cells was regular and retinal cells were well arranged in the CON and MT group. In the RIRI group, both the thickness of inner retinal layer and the number of retinal ganglion cells (RGC) were decreased. On 6, 24 hours and 3, 7 days after RIRI, the thickness of inner retinal layer (F=16.710, 62.303, 68.389, 57.132; P<0.01) and RGC number (F=24.250, 11.624, 14.155, 32.442; P<0.05) in MT group were more than those in RIRI group. Immunohistochemistry staining results showed that less active Caspase-3+ cells were observed in MT group as compared with those in RIRI group at each time points (F=49.118, 134.173, 76.225, 18.385; P<0.01). There were more Nrf2+ (F=11.041, 31.480, 59.246, 6.740; P<0.05) and HO-1+ cells (F=128.993, 21.606, 51.349, 8.244; P<0.05) in MT group as compared with those in RIRI group at each time points. Linear regression analysis results showed that the difference of active Caspase-3+ cells were all linearly correlated with the Nrf2+ cells and HO-1+cells in the MT group (r2=0.810, 0.730; P<0.01). Conclusion MT could reduce retinal cell apoptosis in RIRI rats, and its mechanism may be associated with increased Nrf2 and HO-1 expression, reduced active Caspase-3 expression.
Objective To observe and analyze the gene mutation and clinical phenotype of patients with cone and rod dystrophy (CORD). MethodsA pedigree investigarion. Two CORD pedigrees including 2 patients and 6 family members were enrolled in Ningxia Eye Hospital of People' Hospital of Ningxia Hui Automous Region for this study. The patients were from 2 unrelated families, all of whom were probands. Take medical history with best-corrected visual acuity (BCVA), color vision, slit lamp microscopy, indirect ophthalmoscopy, fundus color photography, optical coherence tomography (OCT), autofluorescence (AF), fluorescein fundus angiography (FFA), electroretinogram (ERG). The peripheral venous blood of patients and their parents was collected, whole genome DNA was extracted, Trio whole genome exome sequencing was performed, Sanger verification and pedigree co-segregation were performed for suspected pathogenic mutation sites. According to the law of inheritance, family history was analyzed to establish its genetic type. Mutational loci pathogenicity was analyzed according to the American College of Medical Genetics (ACMG) guidelines and 4 online tools. ResultsTwo CORD families showed autosomal recessive inheritance. The proband of pedigree 1 was female, 49 years old. Binocular vision loss with photophobia lasted for 9 years and night blindness for 4 years. The BCVA of right eye and left eye were 0.03 and 0.06, respectively. The results of ERG showed that the amplitudes of dark adaptation 0.01 b-wave and dark adaptation 3.0 a-wave and b-wave in both eyes were slightly decreased, and the amplitudes of light adaptation 3.0 a-wave and b-wave were severely decreased. The proband of pedigree 2 was male, 30 years old. Vision loss in both eyes for 4 years. Denying a history of night blindness. The BCVA of right eye and left eye were 0.3 and 0.2, respectively. The results of ERG showed that the amplitudes of dark adaptation 0.01 b-wave and dark adaptation 3.0 a-wave and b-wave in both eyes were slightly decreased, and the amplitudes of light adaptation 3.0 a-wave and b-wave were severely decreased. The color of optic disc in both eyes was light red, the macular area was atrophic, the foveal reflection disappeared, and the peripheral retina was punctate pigmentation. The main fundus changes in 2 patients were macular atrophy. The proband of pedigree 1 carried compound heterozygous variations c.439-2A>G (M1) and c.676delT (p.F226fs) (M2) on CDHR1 gene. Her father and mother carried M2 and M1 heterozygous mutations, respectively. The proband of pedigree 2 carried compound heterozygous variations c.2665dupC (p.L889fs) (M3) and c.878T>C (p.L293P) (M4) on C2orf71 gene. His father and mother carried M4 and M3 heterozygous mutations, respectively. According to ACMG guidelines and on line tools, 4 variations were considered as pathogenic level. ConclusionsM1 and M2 of CDHR1 gene and M3 and M4 of C2orf71 gene are new pathogenic mutations of CORD. All patients presented with the clinical phenotype of decreased visual acuity and macular atrophy.