Epigenetics refers to the changes in gene expression level and function caused by non-genetic sequence changes. It can provide the time, location and mode of the genetic information for the execution of DNA sequences, including DNA methylation, histone modification, non-coding RNA and chromatin remodeling. Studies had shown that epigenetics plays an important role in the development of diabetic retinopathy (DR), and it had been found that epigenetic-related treatment regimens had a certain effect on the treatment of DR through animal experiments and in vitro experiments. It was benefit to regulate the development of diabetes and its complications by depth study of DNA methylation, histone modification, miRNA and metabolic memory. An understanding of changes in gene transcriptional mechanisms at the epigenetic level could help us to further study the prevention and control of diabetes and its complications, and to provide new ideas for treatment.