west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Lightweight model" 2 results
  • Research on lightweight model of intelligent-assisted diagnosis of common fundus diseases based on fundus color photography

    ObjectiveTo observe the diagnostic value of six classification intelligent auxiliary diagnosis lightweight model for common fundus diseases based on fundus color photography. MethodsA applied research. A dataset of 2 400 color fundus images from Nanjing Medical University Eye Hospital and Zhejiang Mathematical Medical Society Smart Eye Database was collected, which was desensitized and labeled by a fundus specialist. Of these, 400 each were for diabetic retinopathy, glaucoma, retinal vein occlusion, high myopia, age-related macular degeneration, and normal fundus. The parameters obtained from the classical classification models VGGNet16, ResNet50, DenseNet121 and lightweight classification models MobileNet3, ShuffleNet2, GhostNet trained on the ImageNet dataset were migrated to the six-classified common fundus disease intelligent aid diagnostic model using a migration learning approach during training as initialization parameters for training to obtain the latest model. 1 315 color fundus images of clinical patients were used as the test set. Evaluation metrics included sensitivity, specificity, accuracy, F1-Score and agreement of diagnostic tests (Kappa value); comparison of subject working characteristic curves as well as area under the curve values for different models. ResultCompared with the classical classification model, the storage size and number of parameters of the three lightweight classification models were significantly reduced, with ShuffleNetV2 having an average recognition time per sheet 438.08 ms faster than the classical classification model VGGNet16. All 3 lightweight classification models had Accuracy > 80.0%; Kappa values > 70.0% with significant agreement; sensitivity, specificity, and F1-Score for the diagnosis of normal fundus images were ≥ 98.0%; Macro-F1 was 78.2%, 79.4%, and 81.5%, respectively. ConclusionThe intelligent assisted diagnosis of common fundus diseases based on fundus color photography is a lightweight model with high recognition accuracy and speed; the storage size and number of parameters are significantly reduced compared with the classical classification model.

    Release date: Export PDF Favorites Scan
  • Brain magnetic resonance image registration based on parallel lightweight convolution and multi-scale fusion

    Medical image registration plays an important role in medical diagnosis and treatment planning. However, the current registration methods based on deep learning still face some challenges, such as insufficient ability to extract global information, large number of network model parameters, slow reasoning speed and so on. Therefore, this paper proposed a new model LCU-Net, which used parallel lightweight convolution to improve the ability of global information extraction. The problem of large number of network parameters and slow inference speed was solved by multi-scale fusion. The experimental results showed that the Dice coefficient of LCU-Net reached 0.823, the Hausdorff distance was 1.258, and the number of network parameters was reduced by about one quarter compared with that before multi-scale fusion. The proposed algorithm shows remarkable advantages in medical image registration tasks, and it not only surpasses the existing comparison algorithms in performance, but also has excellent generalization performance and wide application prospects.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content