west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Lung injury" 33 results
  • The Construction of Mesenchymal Stem Cells Carrying Angiopoietin 1 and Its Application in Lung Injury

    Objective To determine if mesenchymal stem cells ( MSCs) could be reconstructed as a vehicle for angiopoietin-1 ( Ang1) gene therapy in lung injury. Methods MSCs were obtained from adult male inbred mice and cultured to passage four. The cells were identified by fluorescence-activated cell sorting ( FACS) analysis and cell differentiation detection. Lentiviral vectors contained GFP and Ang1 gene were conducted in 293T cells through three plasmids co-transfection method. Then MSCs were transduced with Ang1 gene efficiently through lentiviral vectors. The mRNA expression of Ang1 in MSCs was detected by RT-PCR before and after transfection. Also fluorescence from MSCs was detected by fluorescence microscope every day after transfection. Two hours after LPS inhalation, mice were infused via jugular veinwith normal saline ( NS group) , lentiviral vector carrying Ang1 ( Ang1 group) , lentiviral vector carrying GFP ( MSCs group) , and lentiviral vector carrying Ang1 /GFP ( MSCs-Ang1 group) , respectively. Kaplan-Meier survival analysis was performed to compare the effects of MSCs-Ang1 on survival. And ectogenic MSCs origined lung cells were investigated in receipt mice. Results After passaged and purification,MSCs were confirmed to have the potential of differentiation. The lentiviral vectors carrying Ang1 and GFP were also identified. After transfection, the mRNA expression of Ang1 in MSCs was enhanced. Through the fluorescence microscope,MSCs get the most green fluorescence expression five days after the transfection when MOI was 20. Kaplan-Meier survival analysis showed that MSCs-Ang1 infusion had improved survival rates of lung injury rats compared with the control, but it did not reach statistical significance ( P = 0. 066) . Cells expressing GFP in lung tissues can be observed after MSCs were transplanted in vivo. Conclusions MSCs expressing Ang1 high can be constructed through lentiviral vector transfer, and MSCs-origined cells can be detected in receipt lungs after transplantation. So MSCs may serve as a vehicle for gene therapy in lung injury.

    Release date:2016-09-14 11:25 Export PDF Favorites Scan
  • Administration of exogenous pulmonary surfactant after cardiac surgery in infants

    Objective To evaluate the effect of exogenous pulmonary surfactant(PS) replacement therapy for infants who suffered pulmonary injury after cardiopulmonary bypass. Methods Seven infants (age 0.49±0 82 year, weight 4.87±2.18kg) who depended on respiratory mechanical support with clinical and radiological evidence of pulmonary surfactant sufficiency were enrolled in the study. Oxygen index(OI), artery oxygen saturation(SaO 2) and artery bicarbonate pressure(PaCO 2) were measured at 4, 6, 12, 24, 48, and 72 h after the first application of PS(100mg/kg). At the meantime, maximum spontaneous respiratory tidal volume, chest X ray changes and ventilator time were recorded. Results Compared to the baseline values, OI and SaO 2 increased significantly 4 h after PS therapy, with a maximal increase slope (34.7%, 6.6%) after 24 h. While PaCO 2 decreased significantly 4 h after PS therapy, with a lowest decrease slope (22.8%) after 6 h ( P lt;0.05, 0.01). Spontaneous tidal volume and chest X ray si...更多gn were improved in all infants. The success rate of extubation was 85 7%. Conclusion Exogenous PS replacement therapy could improve pulmonary function for postoperative infants, and highly decrease the ventilator time.

    Release date:2016-08-30 06:27 Export PDF Favorites Scan
  • Large Tidal Volume Mechanical Ventilation Aggravates Acute Lung Injury and Protective Effects of Glutamine

    Objective To study the effects of two different tidal volume mechanical ventilation on lipopolysaccharide( LPS) -induced acute lung injury( ALI) , and explore the effects of glutamine on ALI.Methods Thirty male Sprague-Dawley rats were randomly divided into three groups. After anesthesia and tracheotomy were performed, the rats were challenged with intratracheal LPS ( 5mg/kg) and received ventilation for 4 hours with small animal ventilator. Group A received conventional tidal volume, while groupB received large tidal volume. Group C received large tidal volume as well, with glutamine injected intravenously 1 hour before ventilation. Arterial blood gases were measured every one hour. 4 hours later, the rats were killed by carotid artery bleeding. The total lung wetweightwas measured and lung coefficient ( total lung wet weight /body weight ×100) was counted. WBCs and neutrophils in BALF were counted. Protein concentration, TNF-α, IL-6, and cytokine-induced neutrophil chemoattractant-1 ( CINC-1) levels in BALF,myeloperoxidase ( MPO) , and superoxide dismutase ( SOD) levels in the lung were assayed respectively.Results PaO2 and SOD levels decreased more significantly in group B than those of group A. The lung coefficient, WBCs, neutrophils, protein, TNF-α, IL-6, and CINC-1 levels in BALF, MPO levels in lung increased more significantly in group B than those of group A. PaO2 and SOD levels were significantly higher in group C than those of group B. The lung coefficient, WBCs, neutrophils, protein, TNF-α, IL-6, and CINC-1 levels in BALF,MPO levels in lung were significantly lower in group C than those of group B. Conclusion Large tidal volume mechanical ventilation aggravates LPS-induced ALI, and glutamine has obviouslyprotective effects.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
  • Role of Related Cytokines in Severe Acute Pancreatitis Associated Lung Injury

    ObjectiveTo summarize the changes and interaction of the cytokine in severe acute pancreatitis associated lung injury. MethodsThe published literatures at domestic and aboard in recent years about severe acute pancreatitis associated lung injury were collected and reviewed. ResultsThe cytokines had a chain effect, and influenced each other when severe acute pancreatitis with lung injury attacked. ConclusionsRelated cytokines play important roles in severe acute pancreatitis associated lung injury. Researching the related cytokines will contribute to the diagnosis and treatment for severe acute pancreatitis with lung injury.

    Release date:2016-09-08 04:25 Export PDF Favorites Scan
  • Hyperoxia increases ventilator-induced lung injury in rats

    Objective To study the effects of hyperoxia on ventilator-induced lung injury(VILI) in rats.Methods 48 healthy male SD rats were randomly divided into four groups:Group A received conventional mechanical ventilation(VT=8 mL/kg) with room air,Group B received the same tidal volume as group A with 100% O2,Group C received large tidal volume(VT=40 mL/kg) with room air,group D received the same tidal volume as group C with 100% O2.Arterial blood gases were measured every one hour and oxygenation index(PaO2/FiO2) was calculated.The changes of lung histopathology were assessed by HE staining and observed under light microscope.Wet-to-dry weight ratio(W/D) of left lung,neutrophils and white blood cell(WBC) counts in BALF were measured.TNF-α,IL-1β,and MIP-2 levels in BALF,malondialdehyde(MDA),myeloperoxidase(MPO),and superoxide dismutase(SOD) levels in the lung were assayed,respectively.Results Compared with the Group C,the Group D demonstrated more infiltrating neutrophils in the lung and more destructive changes in the alveolar wall.Meanwhile,the oxygenation index decreased,the WBC and neutrophils counts in BALF increased,and the W/D of left lung was higher in the Group D with significant differences compared with the Group C.Moreover,the BALF levels of TNF-α,IL-1β and MIP-2,the lung levels of MDA increased,and the lung levels of SOD decreased significantly in the Group D compared with those in the Group C.There were no statistical significant differences between the Group B and Group A in all parameters except that MDA levels increased and SOD levels decreased significantly in the Group B.Conclusion Hyperoxia can increase lung injury induced in large tidal volume ventilation in rats,but has mininmal effects in conventional mechanical ventilation.

    Release date:2016-08-30 11:35 Export PDF Favorites Scan
  • Effect of IL-10 and IL-18 on Acute Lung Injury of Severe Acute Pancreatitis

    【Abstract】Objective To investigate the role of interleukin-10(IL-10) and interleukin-18 (IL-18) in the pathogenesis of acute lung injury in experimental severe acute pancreatitis.Methods Forty-eight SD rats were divided into control group and SAP group by the random data table. The model of experimental severe acute pancreatitis was established by injection of 3.5% sodium taurocholate into the bili-pancreatic duct. Lung wet weight index, ascities and level of serum amylase, IL-10 and IL-18 were quantitatively measured in different time. Intrapulmonary expressions of IL-10 mRNA and IL-18 mRNA were detected by semiquantitative RTPCR. The histopathology of pancreas and lung were observed under the light microscope.Results Lung wet weight index, ascities, level of serum amylase, IL-10 and IL-18, intrapulmonary expressions of IL-10 mRNA and IL-18 mRNA were significantly increased in SAP group (P<0.01). The level of serum IL-18 and intrapulmonary expression of IL-18mRNA are positively correlated with lung wet weight index (r=0.68,P<0.01; r=0.72,P<0.01) and lung injury score (r=0.74,P<0.01; r=0.79,P<0.01) respectively, whereas the level of serum IL-10 and intrapulmonary expression of IL-10 mRNA are negatively correlated with lung wet weight index(r=-0.62,P<0.01; r=-0.69,P<0.01) and lung injury score(r=-0.66,P<0.01; r=-0.60,P<0.01). Conclusion IL-18 may play a key role in the pathogenesis of acute lung injury in experimental severe acute pancreatitis, and IL-10 exerts the protection role in this process.

    Release date:2016-09-08 11:54 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE ROLE OF LIPID PEROXIDES DURING LUNG INJURY INDUCED BY ACUTE CHOLANGITIS OF SEVERE TYPE

    The contents of lipid peroxides(LPO)and vitamin E(V.E)and some functional index and histologic changes in the lungs from the the rabbit models of acute cholangitis of severe type(ACST)were measured dynamically.The results revealed that the V.E content decreased strikingly from 6 hours and the LPO level increased progressivelg from 12 hours in the lungs.Simultanuosly,the congestion and neutrophil infiltreation in the lung mesenchyme,and the endothelial cell damage and thrombosis in the lung blood capillaries had been observed.These suggest that acute lung injury induced by ACST is referable to the lipid peroxidation damage to the lung blood capillaries which is due to increased LPO and decreased antioxidants including V.E.

    Release date:2016-08-29 03:24 Export PDF Favorites Scan
  • Establishment of Lung Injury Model Caused by Severe Acute Pancreatitis in Rats with Ligated Pancreatic Duct

    Objective To establish a stable and reliable lung injury model caused by severe acute pancreatitis(SAP)in rats, which is helpful to study the acute lung injury (ALI)and acute respiratory distress syndrome (ARDS) induced by SAP.Methods Sixty Sprague-Dawley rats were randomized into ligature group (n=20), traditional group (n=20),and sham operation group (n=20). SAP model was established through retrograde injection of 5% taurocholic acid. After injection, the pancreatic duct of rats was ligated in ligature group, but not in traditional group. The lung damage and edema at 24 h after operaton and natural course of rats were observed.Results The ALI model of rats induced by SAP was established successfully in ligature group. The rats died of acute respiratory failure within 48 h in ligature group, the mortality was significantly higher than that in traditional group (100% vs.20%),P<0.05. Pleural effusion occurred in four rats in ligature group, while no pleural effusion was found in rats in other two groups. The volume of ascites of rats in ligature group was (21.15±5.33) ml, which was more than that in traditional group 〔(7.75±2.66) ml〕,P<0.05, while no ascites was found in rats in sham operation group. The level of serum amylase of rats in ligature group was (2 470.70±399.73) U/L,which was significantly higher than that in traditional group 〔(1 528.40±289.54) U/L〕 and sham operation group 〔(831.10±93.26) U/L〕,P<0.001. The level of serum albumin of rats in ligature group was (6.90±1.66)g/L, which was significantly lower than that in traditional group 〔(13.10±0.99) g/L〕 and sham operation group 〔(16.20±0.92) g/L〕,P<0.001.The lung wet-to-dry weight ratio (W/D) of rats in ligature group was 6.50±0.23, which was greater than that in traditional group (4.92±0.18) and sham operation group (4.61±0.16), P<0.001. The score of lung histopathologic of rats in ligature group was 29.25±1.07, which was significantly higher than that in traditional group (12.65±1.98) and sham operation group (0),P<0.001. The score of pancreas histopathologic of rats in ligature group was 15.95±0.15,which was significantly higher than that in traditional group (13.75±0.66) and sham operation group (0.13±0.29),P<0.001. Under transmission electron microscope, basement membrane of pulmonary capillary of rats in ligation group was destructive, the nuclei was dissolved, endothelial pinocytotic vesicles was functional active, and tight junctions between capillary endothelial cells were blurred and even ruptured. Moreover, tight junctions between alveolar epithelial cells were destructive. Pathological changes of lung ultrastructure of rats in ligation group were more severe than that in traditional group, while no pathological change of lung ultrastructure was observed in rats in sham operation group. Conclusions Injury process and pathogenesis of ALI or ARDS clinically caused by acute gallstone pancreatitis can be reproduced in this animal model, which is suitable to explore the related mechanisms of ALI caused by SAP and provides good animal model for the study of ALI caused by SAP.

    Release date: Export PDF Favorites Scan
  • The effects of esophageal cooling on lung injury and systemic inflammatory response after cardiopulmonary resuscitation in swine

    ObjectiveTo investigate the effects of esophageal cooling (EC) on lung injury and systemic inflammatory response after cardiopulmonary resuscitation in swine.MethodsThirty-two domestic male white pigs were randomly divided into sham group (S group, n=5), normothermia group (NT group, n=9), surface cooling group (SC group, n=9), and EC group (n=9). The animals in the S group only experienced the animal preparation. The animal model was established by 8 min of ventricular fibrillation and then 5 min of cardiopulmonary resuscitation in the other three groups. A normal temperature of (38.0±0.5)℃ was maintained by surface blanket throughout the experiment in the S and NT groups. At 5 min after resuscitation, therapeutic hypothermia was implemented via surface blanket or EC catheter to reach a target temperature of 33℃, and then maintained until 24 h post resuscitation, and followed by a rewarming rate of 1℃/h for 5 h in the SC and EC groups. At 1, 6, 12, 24 and 30 h after resuscitation, the values of extra-vascular lung water index (ELWI) and pulmonary vascular permeability index (PVPI) were measured, and meanwhile arterial blood samples were collected to measure the values of oxygenation index (OI) and venous blood samples were collected to measure the serum levels of tumor necrosis factor-α (TNF-α) and inerleukin-6 (IL-6). At 30 h after resuscitation, the animals were euthanized, and then the lung tissue contents of TNF-α, IL-6 and malondialdehyde, and the activities of superoxide dismutase (SOD) were detected.ResultsAfter resuscitation, the induction of hypothermia was significantly faster in the EC group than that in the SC group (2.8 vs. 1.5℃/h, P<0.05), and then its maintenance and rewarming were equally achieved in the two groups. The values of ELWI and PVPI significantly decreased and the values of OI significantly increased from 6 h after resuscitation in the EC group and from 12 h after resuscitation in the SC group compared with the NT group (all P<0.05). Additionally, the values of ELWI and PVPI were significantly lower and the values of OI were significantly higher from 12 h after resuscitation in the EC group than those in the SC group [ELWI: (13.4±3.1) vs. (16.8±2.7) mL/kg at 12 h, (12.4±3.0) vs. (16.0±3.6) mL/kg at 24 h, (11.1±2.4) vs. (13.9±1.9) mL/kg at 30 h; PVPI: 3.7±0.9 vs. 5.0±1.1 at 12 h, 3.4±0.8 vs. 4.6±1.0 at 24 h, 3.1±0.7 vs. 4.2±0.7 at 30 h; OI: (470±41) vs. (417±42) mm Hg (1 mm Hg=0.133 kPa) at 12 h, (462±39) vs. (407±36) mm Hg at 24 h, (438±60) vs. (380±33) mm Hg at 30 h; all P<0.05]. The serum levels of TNF-α and IL-6 significantly decreased from 6 h after resuscitation in the SC and EC groups compared with the NT group (all P<0.05). Additionally, the serum levels of IL-6 from 6 h after resuscitation and the serum levels of TNF-α from 12 h after resuscitation were significantly lower in the EC group than those in the SC group [IL-6: (299±23) vs. (329±30) pg/mL at 6 h, (336±35) vs. (375±30) pg/mL at 12 h, (297±29) vs. (339±36) pg/mL at 24 h, (255±20) vs. (297±33) pg/mL at 30 h; TNF-α: (519±46) vs. (572±49) pg/mL at 12 h, (477±77) vs. (570±64) pg/mL at 24 h, (436±49) vs. (509±51) pg/mL at 30 h; all P<0.05]. The contents of TNF-α, IL-6, and malondialdehyde significantly decreased and the activities of SOD significantly increased in the SC and EC groups compared with the NT group (all P<0.05). Additionally, lung inflammation and oxidative stress were further significantly alleviated in the EC group compared with the SC group [TNF-α: (557±155) vs. (782±154) pg/mg prot; IL-6: (616±134) vs. (868±143) pg/mg prot; malondialdehyde: (4.95±1.53) vs. (7.53±1.77) nmol/mg prot; SOD: (3.18±0.74) vs. (2.14±1.00) U/mg prot; all P<0.05].ConclusionTherapeutic hypothermia could be rapidly induced by EC after resuscitation, and further significantly alleviated post-resuscitation lung injury and systemic inflammatory response compared with conventional surface cooling.

    Release date:2019-12-12 04:12 Export PDF Favorites Scan
  • Ulinastatin Alleviates Lung Injury during Cardopulmonary Bypass in Patients Underwent Valve Replacement Surgery

    Objective To study the protective effects of ulinastatin( UTI) on lung function after cardiopulmonary bypass( CPB) . Methods 42 Patients, ASA score Ⅱ ~Ⅲ, scheduled for elective cardiac valve replacement, were randomly allocated into three groups, ie. a control group, a low dose UTI group( UTI 8000U/kg) , and a high dose UTI group( UTI 12 000 U/kg) . Inspiratory pressure( PIP) , Plateau pressure ( Pplat) , alveolar-arterial oxygen pressure difference ( AaDO2 ) , static lung compliance ( Cs) and dynamic lung compliance ( Cd) were recorded before operation ( T1 ) and at 1 hour ( T2 ) , 4 hours ( T3 ) , 24 hours ( T4 ) after CPB termination. Results Compared with pre-CPB, postoperative PIP, Pplat and AaDO2 increased, and Cs and Cd decreased significantly in the control group( all P lt; 0. 05) . Compared with the control group at T2 ~T3 , postoperative PIP, Pplat, AaDO2 were significantly lower( P lt;0. 05) , and Cs and Cd were significantly higher in the two UTI groups( P lt;0. 05) . Compared with the low dose UTI group at T2 ~T3 , the PIP, Pplat and AaDO2 were significantly reduced( P lt;0. 05) , and the Cs and Cd were significantly increased in the high dose UTI group( P lt; 0. 05) . Conclusion UTI can alleviate lung injury and improve lung function during valve replacement surgery with CPB in a dose dependent manner.

    Release date:2016-08-30 11:53 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content