Objective To investigate the feasibility of establishing the visualization models of intraneural microvessels of sciatic nerves in Sprague Dawley (SD) rats by systemic infusion of Evan’s blue (EB) or lead oxide and to compare the advantages and disadvantages. Methods Fifteen healthy adult SD rats of either gender, weighing 200-250 g, were randomly divided into traditional group (group A, n=5), fluorescence group (group B, n=5), and radiography group (group C, n=5). Ink, EB, and lead oxide, all mixed with gelatin solution, were injected in groups A, B, and C, respectively. After 2 hours of cryopreservation under 4°C, all sciatic nerves were harvested and observed through stereomicroscope to make sure the filling condition. The two-dimentional (2D) images were then collected via reflexion fluorescent microscope in group B and via micro-CT scan in group C. All images were imported into computer to establish three-dimentional (3D) reconstruction models by Mimics 15.0. Results All groups could show the outline of intraneural microvessels of sciatic nerves under stereomicroscope. Diameters of them were measured under fluorescent microscope, ranging from 10 µm to 30 µm. Both groups B and C could establish 3D reconstruction models from 2D images. These models could clearly reproduce the structure of microvessels. Conclusion Both EB and lead oxide can be used to establish 3D reconstruction models to observe structure of the intraneural vessels. However, EB has some disadvantages, such as predisposition to infiltration, grainy 2D images and time-consuming procedure; it is not suitable for researches of large specimen. Though 2D pictures from lead oxide have lower resolution than EB, it is easier to be manipulated and appropriate for experiments of large specimen.