【Abstract】 Objective To explore the preventing effects of TGF-β1 antibody (TGF-β1Ab) compounded with fibringlue (FG) on postoperative adhesions of flexor tendon. Methods Seventy-two Leghorn chickens were randomly divided into 4 groups (groups A, B, C and D), 18 chickens for each group, and the long flexor tendons of the 3rd and 4th toes in zone Ⅱ of all chickens were transversed and sutured with the 4-strand cruciate repair technique to make defect models. In group A, 0.2 mL TGF-β1 Ab was appl ied at repair site. In group B, 0.2 mL FG was appl ied at repair site. In group C, 0.2 mL TGF-β1Ab and FG was appl ied at repair site. In group D, 0.2 mL normal sodium was appl ied at repair site. At 1, 3 and 8 weeks after operation, the tendons of 6 chickens in each group were harvested for morphological and histological evaluation. Six specimens of each group were obtained for biomechanical test at 3 and 8 weeks. Results The gross observation showed that the differences ingrading of tendon adhesion were not significant among 4 groups at 1 week after operation (P gt; 0.05), but the differences were significant between groups A, B, D and group C at 3 and 8 weeks after operation (P lt; 0.05). Histological observation showed that collagen fibers arranged irregularly in groups A, B and D, but arranged regularly in group C at 3 and 8 weeks after operation. At 3 weeks after operation the gl iding excursion ratio of the tendon in groups A, B, C and D were 0.45 ± 0.05, 0.40 ± 0.10, 0.79 ± 0.09 and 0.25 ± 0.07 respectively ; the simulated active flexion ratio were 0.61 ± 0.02, 0.67 ± 0.03, 0.91 ± 0.03 and 0.53 ± 0.04 respectively; the work of flexion were(18.00 ± 0.77), (17.80 ± 1.13), (27.60 ± 1.73) and (15.60 ± 1.27)?/N respectively. There were significant differences between group C and other three groups (P lt; 0.05). The tendon anastomosis breaking strengthwere (14.2 ± 1.9), (15.2 ± 2.2), (16.0 ± 2.2) and (14.7 ± 2.7) N, showing no significant differences among 4 groups (P gt; 0.05).At 8 weeks after operation, the gl iding excursion ratio of the tendon in groups A, B, C and D were 0.45 ± 0.07, 0.43 ± 0.08, 0.80 ± 0.09 and 0.29 ± 0.05 respectively; the simulated active flexion ratio were 0.61 ± 0.02, 0.63 ± 0.03, 0.92 ± 0.03 and 0.53 ± 0.03 respectively, the work of flexion were (18.30 ± 0.84), (18.60 ± 0.80), (27.90 ± 1.24) and (15.30 ± 0.75) ?/N respectively. There were significant differences between group C and other three groups (P lt; 0.05). The tendon anastomosis breaking strength were(51.9 ± 3.0), (51.4 ± 1.4), (53.3 ± 1.3) and (52.3 ± 2.2) N, showing no significant differences among 4 groups (P gt; 0.05). Conclusion TGF- β1Ab compounded with FG could significantly prohibit the formation of fibrous adhesions without interfering with the heal ing process.
To investigate the cl inical results and the mechanism of bone heal ing for the repair of bone defects following tumor resection with novel interporous TCP bone graft, and to test the hypothesis of “structural transplantation”. Methods From January 2003 to December 2005, 61 cases of various bone defects following the curettage of the benign bone tumors were treated with interporous TCP, with 33 males and 28 females, including bone fibrous dysplasiain 8 cases, bone cyst in 23 cases, eosinophil ic granuloma in 12 cases, enchondroma in 13 cases, non-ossifying fibroma in 2 cases, and osteoblastoma in 3 cases. Tumor sizes varied from 1.5 cm × 1.0 cm to 7.0 cm × 5.0 cm. The plain X-ray, single photon emission computed tomography (SPECT) and histology examination were obtained at various time points after operation. The in vivo biodegradation rate of the implanted TCP was evaluated based on a semi-quantitive radiographic analyzing method. Histopathology examination was performed in 1 revision case. Results All the patients were followed up for 5 to 24 months after operation. They all had good wound heal ing and bone regeneration. There was neither significant reverse reaction to the transplanted material nor locally inflammatory reaction in all of the cases. The bone defects were repaired gradually from 1 to 6 months after operation (bone heal ing at average 2.6 months after surgery) with a bone heal ing rate up to 96.7%. There was only 1 recurrence case (eosinophil ic granuloma in ischium) 3 months after operation. Given revision operation, this case gained bone heal ing. Radiographically, the interface between the implanted bone and host bone became fuzzy 1 month after implantation, indicating the beginning of new bone formation. Three months later, the absorption of the interporous TCP was noticed from peripheral to the center of the implanted bone evidenced by the vague or fuzzy realm. New bone formation could be seen both in peri pheral and central areas. Six months later, implanted bone and host bone merged together and the bone defect was totally repaired, with 78.9% degradation rate of the implanted TCP. Twelve months later, the majority of the implanted bone was absorbed and bone remodel ing was establ ished. In the cases that were followed up for 24 months, the function of affectedextremity was excellent with good bone remodel ing without recurrence. In 2 cases, SPECT showed that nucl ide uptake could be observed in implanted site and the metabol ic activity was high both in the central as well as the peripheral areas of the graft 1 month after implantation, which was an evidence of osteogenesis. Pathologically, the interporous TCP closely contacted the host bone inside the humerus 1 month after grafting. The interface between the implanted bone and host bone became fuzzy, and vascularized tissue began growing inside the implanted graft as a “l ining” structure. Conclusion The interporous TCP proves to be effective for cl inical reparation of bone defects following tumor resection. The inside three-dimensional porous structure simulates the natural bionic bone structure which is suitable for recruitment related cells in-growth into the scaffold, colonizing and prol iferation companied with the process of vascularize, finally with the new bone formation. The novel interporous TCP may boast both bone conductive and bone inductive activities, as an appeal ing “structural transplantation” bone graft.
【Abstract】 Objective To produce a new bone tissue engineered carrier through combination of xenograft bone (X)and sodium alginate (A) and to investigate the biological character of the cells in the carrier and the abil ity of bone-forming in vivo, so as to provide experimental evidence for a more effective carrier. Methods BMSCs were extracted from 2-week-old New Zealand rabbits and the BMSCs were induced by rhBMP-2 (1 × 10-8mol/L). The second generation of the induced BMSCs was combined with 1% (V/W) A by final concentration of 1 × 105/mL. After 4-day culture, cells in gel were investigated by HE staining. The second generation of the induced BMSCs was divided into the DMEM gel group and the DMEM containing 1% A group. They were seeded into 48 well-cultivated cell clusters by final concentration of 1 × 105/mL. Seven days later, the BMP-2 expressions of BMSCs in A and in commonly-cultivated cells were compared. The second generation of the induced BMSCs was mixed with 2% A DMEM at a final concentration of 1 × 1010/mL. Then it was compounded with the no antigen X under negativepressure. After 4 days, cells growth was observed under SEM. Twenty-four nude mice were randomly divided into 2 group s (n=12).The compound of BMSCs-A-X (experimental group) and BMSCs-X (control group) with BMSCs whose final concentrat ion was 1 × 1010/mL was implanted in muscles of nude mice. Bone formation of the compound was histologically evaluated by Image Analysis System 2 and 4 weeks after the operation, respectively. Results Cells suspended in A and grew plump. Cell division and nuclear fission were found. Under the microscope, normal prol iferation, many forming processes, larger nucleus, clear nucleolus and more nuclear fission could be seen. BMP-2 expression in the DMEM gel group was 44.10% ± 3.02% and in the DMEM containing 1% A group was 42.40% ± 4.83%. There was no statistically significant difference between the two groups (P gt; 0.05). A was compounded evenly in the micropore of X and cells suspended in A 3-dimensionally with matrix secretion. At 2 weeks after the implantation, according to Image Analysis System, the compound of BMSCs-A-X was 5.26% ± 0.24% of the totalarea and the cartilage-l ike tissue was 7.31% ± 0.32% in the experimental group; the compound of BMSCs-X was 2.16% ± 0.22% of the total area and the cartilage-l ike tissue was 2.31% ± 0.21% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). At 4 weeks after the operation, the compound of BMSCs-A-X was 7.26% ± 0.26% of the total area and the cartilage-l ike tissue was 9.31% ± 0.31% in the experimental group; the compound of BMSCs-X was 2.26% ± 0.28% of the total area and the cartilage-l ike tissue was 3.31% ± 0.26% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). Conclusion The new carrier compounding A and no antigen X conforms to the superstructural principle of tissue engineering, with maximum cells load. BMSCs behave well in the compound carrier with efficient bone formation in vivo.