Objective To observe the effect of BMSCs transplantation on gene and protein expression of VEGF receptor fetal l iver kinase 1 (Flk-1) after spinal cord injury (SCI), and to investigate the mechanism of repairing the SCI by BMSCs transplantation. Methods BMSCs were isolated and cultured from five 4-week-old male Wistar rats weighing100-120 g. The SCI model was made by using the modified Allen’s impactor device. Eighty-one adult female Wistar rats weighing 220-250 g were randomly divided into 3 groups: sham-operated group (group A, n=21), in which spinous process and vertebral plate of thorax 8-10 spinal cord segment were removed; DMEM group (group B, n=30), in which rats received four injections of DMEM in the peri-lesion area; and BMSCs group (group C, n=30), in which rats received four injections of BMSCs in the peri-lesion area. The changes of Flk-1 mRNA expression in rats’ spinal cord tissues were detected with RT-PCR method 1, 3 and 5 days after transplantation. The expression of Flk-1 protein was observed by using immunohistochemical technology in spinal cord 3, 7 and 14 days after transplantation. Results Morphology of the primary cultured BMSCs was various. Cell morphology tended to be uniform with the accumulation of passages, which appeared flat and spindle-shaped. RT-PCR results showed that there was no significant differences (P gt; 0.05) in Flk-1 mRNA expression between group C and group B at different time points after transplantation. But Flk-1 mRNA levels of group B and group C significantly increased and peaked 1 day after transplantation (P lt; 0.01), and then decreased 3 days after transplantation (P lt; 0.01) compared with that of group A, and were still higher than that of group A 5 days after transplantation (P lt; 0.05). Immunohistochemical staining results revealed that the expression of Flk-1 in group B was enhanced 3 and 7 days after transplantation compared with group A, which was significantly different (P lt; 0.01). There was no significant difference in the expression of Flk-1 between group B and groupp A 14 days after transplantation (P gt; 0.05). There was no significant difference in Flk-1 protein expression between group C and group B 3 days after transplantation (P gt; 0.05). The expression of Flk-1 protein in group C was significantly higher than that in group B 7 and14 days after transplantation (P lt; 0.01). Conclusion BMSCs transplantation after SCI does not have regulatary effect onthe expression of Flk-1 mRNA, but it does upregulate the Flk-1 protein expression, which may be one of the mechanisms of repairing SCI.
Objective To investigate the feasibil ity of inducing canine BMSCs to differentiate into epithel ial cells in vitro with epithel ial cell conditioned medium (ECCM). Methods Five mL BMSCs were obtained from il iac spine of a healthy adult male canine with weighing 10 kg, and then isolated and cultured. The oral mucosa was harvested and cut into 4 mm × 4 mm after the submucosa tissue was el iminated; ECCM was prepared. BMSCs of the 2nd passage were cultured and divided into two groups, cultured in ECCM as experimental group and in L-DMEM as control group. The cell morphological characteristics were observed and the cell growth curves of two groups were drawn by the continual cell counting. The cells were identified by immunohistochemical staining through detecting cytokeratin 19 (CK-19) and anti-cytokeratin AE1/AE3 on the21st day of induction. The ultra-structure characteristics were observed under transmission electron microscope. Results The cells of two groups showed long-fusiform in shape and distributed uniformly under inverted phase contrast microscope. The cell growth curves of two groups presented S type. The cell growth curve of the experimental group was right shifted, showing cell prol iferation inhibition in ECCM. The result of immunohistochemical staining for CK-19 and anti-cytokeratin AE1/AE3 was positive in the experimental group, confirming the epithel ial phenotype of the cells; while the result was negative in the control group. The cells were characterized by tight junction under transmission electron microscope. Conclusion The canine ECCM can induce allogenic BMSCs to differentiate into epithel ial cells in vitro.
Objective To investigate the adhesiveness of osteoblasts and vascular endothel ial cells from rat BMSCs co-cultured on allogeneic freeze-dried partially bone in vitro. Methods The BMSCs were isolated from 4-week-old SD rats (weighing 100-110 g) and cultured in vitro. The third generation of BMSCs were induced into osteoblasts and vascular endothel ial cells. The osteoblasts and vascular endothel ial cells after being induced for 7 days in a ratio of 1 to 1 were directlyco-cultured (experimental group), while the second generation of uninduced BMSCs was used as a control (control group). The growth and prol iferation abil ity were analyzed by MTT examination and the growth curve was drawn at 1-8 days. The osteoblasts and vascular endothel ial cells after being induced for 14 days were implanted in the allogeneic freeze-dried partially bone coated by 20% Col I or not at different densities (0.25 × 106/mL、0.50 × 106/mL、1.00 × 106/mL、2.00 × 106/mL、4.00 × 106/mL), as modified group and unmodified group, the cell adherence rate was calculated after 24 hours. These two kinds of cells were implanted in the pre-disposal treated allogeneic freeze-dried partially bone and observed by scanning electron microscope. Results ALP staining of osteoblasts showed that there were blue grains in cytoplasm at 7 days. CD31 and CD34 immunocytochemical staining of vascular endothelial cell showed that there were positive signals in the cytoplasm at 14 days. The MTT test showed that the prol iferation level of the experimental group was lower than those of the control group. There were significant differences in absorbance value between two group from 3 days to 8 days (P lt; 0.05). The cell adherence rate increased with increasing seeding density when the seeding density was (0.25-1.00) × 106/mL. The cell adherence rate reached the peak when the seeding density was 1.00 × 106/mL. The cell adherence rate decreased when the seeding density was more than 2.00 × 106/mL. There were significant differences in cell adherence rate between modified group and unmodified group at different seeding densities (P lt; 0.05). The prol iferation of the osteoblasts and endothel ial cells presented better growth and histocompatibil ity under scanning electron microscope. Conclusion The growing behavior of two kinds of cells is good in the allogeneic freezedried partially bone coated by 20% Col I , which can be used in reconstrction of vascularized tissue engineered bone.
Objective To study the effect of hypoxia on the prol iferation of hBMSCs and human placental decidua basal is-MSCs (hPDB-MSCs), and to provide the theoretical basis for discovering the new seed cells source for tissue engineering. Methods Density gradient centrifugation method was adopted to isolate and culture hBMSCs and hPDB-MSCs,flow cytometry (FCM) was appl ied to detect cell surface marker. After establ ishing the experimental model of CoC12 chemical hypoxia, MTT method was appl ied to evaluate the prol iferation of hBMSCs and hPDB-MSCs at different time points (6, 12, 24, 48, 72, 96 hours) with various CoC12 concentration (0, 50, 75, 100, 125, 150, 175, 200 μmol/L). Results FCM analysis revealed that hPDB-MSCs and hBMSCs expressed CD9, CD29, CD44, CD105, CD106 and human leucocyte antigen ABC (HLA-ABC), but both were absent for CD34, CD40L and HLA-DR. Compared with hBMSCs, hPDB-MSCs expressed stage-specific embryonic antigen 1 (SSEA-1), SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81 better. The prol iferations of hPDB-MSCs and hBMSCs were inhibited within the first 12 hours under hypoxia condition, but promoted after 12 hours of hypoxia. Compared with the control group, the hBMSCs were remarkably prol iferated 24 hours after hypoxia with CoC12 concentration of 150 µmol/L (P lt; 0.05), while hPDB-MSCs were significantly prol iferated 12 hours after hypoxia with CoC12 concentration of 75 µmol/L (P lt; 0.05). Conclusion Compared with hBMSCs, hPDB-MSCs express more specific surface antigens of embryonic stem cells and are more sensitive to the prol iferation effects of chemical hypoxia, indicating it may be a new seed cells source for tissue engineering.
【Abstract】 Objective To investigate the possibil ity of BMSCs seeded into collagen Ⅰ -glycosaminoglycan (CG)matrices to form the tissue engineered cartilage through chondrocyte inducing culture. Methods Bone marrow aspirate of dogs was cultured and expanded to the 3rd passage. BMSCs were harvested and seeded into the dehydrothemal treatment (DHT)cross-l inked CG matrices at 1×106 cells per 9 mm diameter sample. The samples were divided into experimental group and control group. In the experimental group, chondrogenic differentiation was achieved by the induction media for 2 weeks. Medium was changed every other day in both experimental group and control group. The formation of cartilage was assessed by HE staining and collagen Ⅱ immunohistochemical staining. Results The examinations under the inverted phase contrast microscopeindicated the 2nd and 3nd passage BMSCs had the similar morphology. HE staining showed the BMSCs in the experimental group appeared polygon or irregular morphology in the CG matrices, while BMSCs in the control group appeared fibroblast-l ike spindle or round morphology in the CG matrices. Extracellular matrix could be found around cells in the experimental group. Two weeks after seeded, the cells grew in the CG matrices, and positive collagen Ⅱ staining appeared around the cells in the experimentalgroup. There was no positive collagen Ⅱ staining appeared in the control group. Conclusion It is demonstrated that BMSCs seeded CG matrices can be induced toward cartilage by induction media.
Objective To access the possibil ity of CPC as a suitable scaffold for tissue engineering artificial rib by morphologic observation, adhesion experiments and cellar prol iferation experiments. Methods The 5 mm × 5 mm × 5 mm CPCs were prepared and the structure and components of CPC were compared with those of the normal human bone by micro-CT and scanning electron microscope. Bone marrow aspirates were harvested from the young pig and monuclear cells were separated. The first passage cells were collected and re-suspended in the culture media at a density of 6 × 105 cells/mL. There was 150 μL suspension which was incoluated on the CPC, and then cells were recollected and counted 4, 12 and 24 hours after inoculation. MTT was used to examine the growth condition of BMSCs on the surface of CPC. The scanning electron microscope was used to observe the CPC scaffold 7 days after inoculation, and comparison was made with CPC and the normal human bone. Results The adhesion rate of CPC was 28.00% ± 0.98%, 46.70% ± 1.14% and 48.50% ± 1.18%, respectively 4, 12 and 24 hours after compound culture. The prol iferation rate of CPC was 1.103 ± 0.214, 1.557 ± 0.322, 1.920 ± 0.178, 2.564 ± 0.226, 2.951 ± 0.415 and 3.831 ± 0.328, respectively 1, 2, 3, 4, 5 and 6 days after compound culture, with an obvious rising trend. The micro-CT demonstrated that the content of hydroxyapatite of porous phosphate calcium was (1 101.222 8 ± 0.618 4) mg/ ccm while that of the normal human bone was (1 072.552 3 ± 0.744 2) mg/ccm, and the porosity of porous phosphate calcium was 70.26% ± 0.45% while that of the normal human bone was 72.82% ± 0.51%, and there was no significant difference (P gt; 0.05). The experiment of cell prol iferation showed that the cell which was cultivated with porous phosphate calcium prol iferated rapidly. Through the inverted phase contrast microscope, it was found that the cells grew well and there was no dead cell, which indicated that the material had no toxicity. The rate of the cell adhesion to CPC was less than 50%. Conclusion The structure and components of CPC are similar to those of the normal human bone, and BMSCs grow well on the surface of it, so it is asuitable scaffold for tissue engineering artificial rib. However, the cell adhesion abil ity is to be further improved.
Objective To confirm the stimulating effect of simvastatin on BMSCs of SD rats osteogenic differentiation, and to further study the role of Wnt signal ing pathway in this process. Methods BMSCs derived from the tibia and femur of 6-week-old female SD rats were cultured in vitro.Two groups were establ ished: control group and experimental group. After the 2nd passage, the cells of experimental group were treated with simvastatin (1 × 10-7mol/L) and the cells of control group with absolute ethyl alcohol and PBS. ALP staining was used at 7 days and von Kossa staining was appl ied at 28 days to assess osteoblastic differentiation and mineral ization. Real-time quantitative PCR was performed to evaluate theexpressions of Axin2, β-catenin, osteocalcin (OC), frizzled-2, Lef-1, and Wnt5a mRNA at 7 days and 14 days after simvastatin treatment. Results The observation of inverted phase contrast microscope showed that the majority of cells were polygonal and triangular in the experimental group, and were spindle-shaped in the control group at 7 days. The ALP staining showed blue cytoplasm, the positive cells for ALP staining in the experimental group were more than those in the control group at 7 days. The von Kossa staining showed that mineral ization of extracelluar matrix at 28 days in two groups, but the mineral ization in the experimental group was more obvious than that in the control group. The expression of Axin2 mRNA was significantly lower, and frizzled-2, Lef-1 mRNA were significantly higher in the experimental group than in the control group (P lt; 0.05) at 7 days, while the mRNA expressions of Axin2, OC, frizzled-2, Lef-1, and Wnt5a were significantly higher in the experimental group than in the control group at 14 days (P lt; 0.05). Conclusion Simvastatin can promote the osteogenic differentiation of BMSCs and change the expression of mRNA of some components of Wnt signal ing pathway.
Objective To explore effect of platelet-rich plasma (PRP) on rabbit BMSCs differentiation into SC in vitro and to detect secretory function of the differentiated cells. Methods BMSCs isolated from 5 mL bone marrow of 2-montholdNew Zealand white rabbit were cultured using density gradient centrifugation and adherence screening methods. A total of 5 mL femoral vein blood was obtained from rabbits to prepare PRP using modified Appel method. The BMSCs at passage 3 were divided into three groups: the combined induction group, in which the cells were cultured with complete medium containing PRP after β-mercaptoethanol and retinoic acid inductions; the simple induction group, in which the cells were cultured with L-DMEM complete medium without PRP afterβ-mercaptoethanol and retinoic acid induction; the control group, in which the cells were cultured with L-DMEM complete medium. Growth condition of the cells in each group was observed using inverted microscope. cell identification was conducted at 4, 7, 9, and 11 days after culture using immunofluorescence staining method, and NGF content was detected by ELISA method. NGF mRNA expression was assayed by RT-PCR 11 days after culture. Results Most cells in the combined induction and the simple induction group were out of BMSCs typical cell morphology 4 days after culture; cells in the combined induction group were out of BMSCs typical cell morphology and changed into cells resembl ing SC in terms of morphology and contour 9 days after culture. The cells in the control group showed no obvious morphological changes. S-100 protein expression in the cells was evident in the combined induction and the simple induction group at each time point after induced culture; the positive expression rate of cell in each group was increased over time, and significant differences were evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05). Control groupwas negative for the expression. There were significant differences when comparing the control group with the combined induction group or the simple induction group in terms of NGF content at each time point (P lt; 0.01). Significant difference was evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05), and no significant difference was noted 4 days after culture (P gt; 0.05). Relative intensity of NGF mRNA expression in the combined induction group was greater than that of the simple induction group 11 days after culture (P lt; 0.05). Conclusion Rabbit BMSCs can differentiate into SC excreting NGF under certain induction condition in vitro. PRP can remarkably promote BMSCs differentiation into SC.
Objective To investigate the expression levels of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B l igand (RANKL) mRNAs in BMSCs in patients suffering glucocorticoid-induced necrosis of the femoral head (GNFH), and to discuss the relationshi p between OPG/RANKL system and GNFH. Methods The bone tissue and BMSCs of femoral head were collected from 35 patients suffering GNFH (experimental group) and from 21 patients suffering fracture of femoral neck (control group). The ratio of men to women was 4 ∶ 3 in two groups, aged 41 to 70 years (mean 55.34years in the experimental group and mean 55.33 years in the control group). The patients of experimental group received over 3 weeks’ glucocorticoid treatment or more than 1 week’s high-dose glucocorticoid therapy in recent 2 years, but patients of the control group did not receive more than 1 week’s hormone therapy. In 2 groups, the microstructure of bone tissue of femoral head was detected by HE staining. The BMSCs were isolated and cultured by adherent-wall method; the expression levels of OPG and RANKL mRNAs were examined by real-time quantitative polymerase chain reaction and the ratio of OPG mRNA to RANKL mRNA was caculated. Results Bone trabeculae and bone units were replaced by interrupted bone fragments, which were surrounded by inflammation and granulation tissue and few osteocytes were seen in bone lacunae in the experimental group. In control group, bone trabeculae and bone units were made by complete lamellar bone which surrounded blood vessels and osteocytes were seen in lacunae. The expression levels of OPG mRNA in the experimental group (0.37 ± 0.12) was significantly lower than that in the control group (0.47 ± 0.13), and the levels of RANKL mRNA in the experimental group (1.12 ± 0.39) was significantly higher than that in the control group (0.84 ± 0.24), showing statistically significant difference (P lt; 0.05). The ratio of OPG mRNA to RANKL mRNA in the experimental group (0.37 ± 0.17) was significantly lower than that in the control group (0.61 ± 0.26, P lt; 0.05). Conclusion The GNFH may be related to the expression levels of OPG mRNA and RANKL mRNA in BMSCs.
Objective To supply references to tissue-engineered skin cl inical appl ications with autogenic BMSCs composited collagen membrane to repair swine full-thickness cutaneous deficiency. Methods Twenty mL bone marrow were obtained respectively from 4 swine, autogenic BMSCs were cultured and passed to the 3rd passage. The fresh bovine tendontreated by means of chemically cross-l inked was made 5 cm diameter collagen I (Col I) membrane. The 2 × 107/mL P3 swine autogenic BMSCs labeled DAPI were planted to sterile Col I membrane for 24 hours incubation, then the tissue-engineered skin was constructed. The five full-thickness skin defect of 5 cm diameter was excised to the muscle from forward to backward on the back midl ine two sides of swine. The tissue-engineered skin were implanted in the experimental group, while Col I membrane was implanted in control group. After 3 and 8 weeks of implantation, the two swine wound surface heal ing circumstance was observed and further evaluated with histology analysis and TEM. After 3 weeks of implantation, the experimental group were observed with fluorescence microscopy and staining for glycogen. Results After 3 weeks of implantation, the wound surface of control group were observed nigrescence, scab and putrescence, and after 8 weeks of implantation, also evident putrescence and scar. The wound surface of experiment group was al ive after 3 weeks implantation, appearance was leveled off and flexible without evident scar. The wound surface recovered well after 8 weeks of implantation, wound surface heal ing rate was significantly difference between the two groups (P lt; 0.01). After 3 weeks of implantation, control group were observed acestoma hyperplasia and no epidermal coverage by histology analysis. The experimental group was showed integrity epidermis and dermis structure. The basal layer was crimson and continuously positive with glycogen staining. After 8 weeks of implantation, the experimental group and control group were emerged normal skin structure. After 3 weeks of implantation in control group, a lot of neutrophil ic granulocytes and fibroblasts were noticed, but no epidermal structure was observed under TEM. In the experimental group, a lot of epidermal cells were observed, dermatome connection among epidermal cells and hemidermosome connection between basilar membrane cells and basal membrane were observed in epidermis. In the dermis experimental group, blood capillary endothel ial cells were noticed. Furthermore, considerable collagen fiber deposit was found in the surrounding tissue of fibroblasts. After 3 weeks of implantation, BMSCs labeled with DAPI were located reconstructed epidermal basement membrane and dermis by fluorescence microscopy. Conclusion Tissue-engineered skin which is composited with autogenic BMSCs as seed cells and collagen membrane were potential prospects in appl ication of repairing swine full-thickness cutaneous deficiency.