ObjectiveTo systematically evaluate the clinical value of machine learning (ML) for predicting the neurological outcome of out-of-hospital cardiac arrest (OHCA), and to develop a prediction model. MethodsWe searched the PubMed, Web of Science, EMbase, CNKI, Wanfang database from January 1, 2011 to November 24, 2021. Studies on ML for predicting neurological outcomes in OHCA pateints were collected. Two researchers independently screened the literature, extracted the data and evaluated the bias of the included literature, evaluated the accuracy of different models and compared the area under the receiver operating characteristic curve (AUC). ResultsA total of 20 studies were included. Eleven of the studies were from open source databases and nine were from retrospective studies. Sixteen studies directly predicted OHCA neurological outcomes, and four predicted OHCA neurological outcomes after target temperature management. A total of seven ML algorithms were used, among which neural network was the ML algorithm with the highest frequency (n=5), followed by support vector machine and random forest (n=4). Three papers used multiple algorithms. The most frequently used input characteristic was age (n=19), followed by heart rate (n=17) and gender (n=13). A total of 4 studies compared the predictive value of ML with other classical statistical models, and the AUC value of ML model was higher than that of classical statistical models. ConclusionExisting evidence suggests that ML can more accurately predict OHCA nervous system outcomes, and the predictive performance of ML is superior to traditional statistical models in certain situations.
Objective To systematically review prediction models of small for gestational age (SGA) based on machine learning and provide references for the construction and optimization of such a prediction model. Methods The PubMed, EMbase, Web of Science, CBM, WanFang Data, VIP and CNKI databases were electronically searched to collect studies on SGA prediction models from database inception to August 10, 2022. Two researchers independently screened the literature, extracted data, evaluated the risk of bias of the included studies, and conducted a systematic review. Results A total of 14 studies, comprising 40 prediction models constructed using 19 methods, such as logical regression and random forest, were included. The results of the risk of bias assessment from 13 studies were high; the area under the curve of the prediction models ranged from 0.561 to 0.953. Conclusion The overall risk of bias in the prediction models for SGA was high, and the predictive performance was average. Models built using extreme gradient boosting (XGBoost) demonstrated the best predictive performance across different studies. The stacking method can improve predictive performance by integrating different models. Finally, maternal blood pressure, fetal abdominal circumference, head circumference, and estimated fetal weight were important predictors of SGA.
Steady-state visual evoked potential (SSVEP) is one of the commonly used control signals in brain-computer interface (BCI) systems. The SSVEP-based BCI has the advantages of high information transmission rate and short training time, which has become an important branch of BCI research field. In this review paper, the main progress on frequency recognition algorithm for SSVEP in past five years are summarized from three aspects, i.e., unsupervised learning algorithms, supervised learning algorithms and deep learning algorithms. Finally, some frontier topics and potential directions are explored.
ObjectiveTo explore the application of Tsetlin Machine (TM) in heart beat classification. MethodsTM was used to classify the normal beats, premature ventricular contraction (PVC) and supraventricular premature beats (SPB) in the 2020 data set of China Physiological Signal Challenge. This data set consisted of the single-lead electrocardiogram data of 10 patients with arrhythmia. One patient with atrial fibrillation was excluded, and finally data of the other 9 patients were included in this study. The classification results were then analyzed. ResultsThe classification results showed that the average recognition accuracy of TM was 84.3%, and the basis of classification could be shown by the bit pattern interpretation diagram. ConclusionTM can explain the classification results when classifying heart beats. The reasonable interpretation of classification results can increase the reliability of the model and facilitate people's review and understanding.
With the development of artificial intelligence, machine learning has been widely used in diagnosis of diseases. It is crucial to conduct diagnostic test accuracy studies and evaluate the performance of models reasonably to improve the accuracy of diagnosis. For machine learning-based diagnostic test accuracy studies, this paper introduces the principles of study design in the aspects of target conditions, selection of participants, diagnostic tests, reference standards and ethics.
ObjectiveTo systematically review the early clinical prediction value of machine learning (ML) for cardiac arrest (CA).MethodsPubMed, EMbase, WanFang Data and CNKI databases were electronically searched to retrieve all ML studies on predicting CA from January 2015 to February 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. The value of each model was evaluated based on the area under receiver operating characteristic curve (AUC) and accuracy.ResultsA total of 38 studies were included. In terms of data sources, 13 studies were based on public database, and other studies retrospectively collected clinical data, in which 21 directly predicted CA, 3 predicted CA-related arrhythmias, and 9 predicted sudden cardiac death. A total of 51 models had been adopted, among which the most popular ML methods included artificial neural network (n=11), followed by random forest (n=9) and support vector machine (n=5). The most frequently used input feature was electrocardiogram parameters (n=20), followed by age (n=12) and heart rate variability (n=10). Six studies compared the ML models with other traditional statistical models and the results showed that the AUC value of ML was generally higher than that in traditional statistical models.ConclusionsThe available evidence suggests that ML can accurately predict the occurrence of CA, and the performance is significantly superior to traditional statistical model in certain cases.
Alzheimer’s disease (AD) is a common and serious form of elderly dementia, but early detection and treatment of mild cognitive impairment can help slow down the progression of dementia. Recent studies have shown that there is a relationship between overall cognitive function and motor function and gait abnormalities. We recruited 302 cases from the Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center and included 193 of them according to the screening criteria, including 137 patients with MCI and 56 healthy controls (HC). The gait parameters of the participants were collected during performing single-task (free walking) and dual-task (counting backwards from 100) using a wearable device. By taking gait parameters such as gait cycle, kinematics parameters, time-space parameters as the focus of the study, using recursive feature elimination (RFE) to select important features, and taking the subject’s MoCA score as the response variable, a machine learning model based on quantitative evaluation of cognitive level of gait features was established. The results showed that temporal and spatial parameters of toe-off and heel strike had important clinical significance as markers to evaluate cognitive level, indicating important clinical application value in preventing or delaying the occurrence of AD in the future.
It is a significant challenge to improve the blood-brain barrier (BBB) permeability of central nervous system (CNS) drugs in their development. Compared with traditional pharmacokinetic property tests, machine learning techniques have been proven to effectively and cost-effectively predict the BBB permeability of CNS drugs. In this study, we introduce a high-performance BBB permeability prediction model named balanced-stacking-learning based BBB permeability predictor(BSL-B3PP). Firstly, we screen out the feature set that has a strong influence on BBB permeability from the perspective of medicinal chemistry background and machine learning respectively, and summarize the BBB positive(BBB+) quantification intervals. Then, a combination of resampling algorithms and stacking learning(SL) algorithm is used for predicting the BBB permeability of CNS drugs. The BSL-B3PP model is constructed based on a large-scale BBB database (B3DB). Experimental validation shows an area under curve (AUC) of 97.8% and a Matthews correlation coefficient (MCC) of 85.5%. This model demonstrates promising BBB permeability prediction capability, particularly for drugs that cannot penetrate the BBB, which helps reduce CNS drug development costs and accelerate the CNS drug development process.
As an interdisciplinary subject of medicine and artificial intelligence, intelligent diagnosis and treatment has received extensive attention in both academia and industry. Traditional Chinese medicine (TCM) is characterized by individual syndrome differentiation as well as personalized treatment with personality analysis, which makes the common law mining technology of big data and artificial intelligence appear distortion in TCM diagnosis and treatment study. This article put forward an intelligent diagnosis model of TCM, as well as its construction method. It could not only obtain personal diagnosis varying individually through active learning, but also integrate multiple machine learning models for training, so as to form a more accurate model of learning TCM. Firstly, we used big data extraction technique from different case sources to form a structured TCM database under a unified view. Then, taken a pediatric common disease pneumonia with dyspnea and cough as an example, the experimental analysis on large-scale data verified that the TCM intelligent diagnosis model based on active learning is more accurate than the pre-existing machine learning methods, which may provide a new effective machine learning model for studying TCM diagnosis and treatment.
This paper expounds the classification and characteristics of healthcare-associated infections (HAI) surveillance systems from the perspective of the informatization needs of HAI monitoring, explains the determination requirements of numerator and denominator in the surveillance statistical data, and introduces the regular verification for auditing the quality of HAI surveillance. The basic knowledge of machine learning and its achievements are introduced in processing surveillance data as well. Machine learning may become the mainstream algorithm of HAI automatic monitoring system in the future. Infection control professionals should learn relevant knowledge, cooperate with computer engineers and data analysts to establish more effective, reasonable and accurate monitoring systems, and improve the outcomes of HAI prevention and control in medical institutions.