Objective To observe the effect of Minocycline on RP process of retinal pigmentary degeneration rd mice[C3H/HeN (Pde6brd-/rd-)]. Methods 40 rd mice were divided into ten groups randomly: 5 experimental groups and 5 control groups, 4 rd mice in each group. The experimental group received intraperitoneal injection of minocycline 22.5mg/kg while the control group received saline 10ml/kg every day from the postnatal day 1 (P1) . Mice were sacrificed at P1, P7, P14, P21 and P28 respectively. Eyeballs were enucleated to carry out histology observation and apoptosis cell detection. Meanwhile, to statistically analyze the number of retinal photoreceptor cells,the thickness of outer nuclear layer (ONL)and the number of apoptosis cells. Results (1)Photoreceptor cell began to apoptosis on P7, peaked on P14, and totally disappeared on P28. (2)No statistically significant differences were found of the number of photoreceptor cells and the thickness of ONL on P7 between the experimental group and the control group. (3) The number of photoreceptor cells and the thickness of ONL in the experimental were more than that in the control group at P14, P21, P28 respectively, the differences are statistically significant(Plt;0.05). (4) The apoptotic cells on ONL were less in the experimental group than that in the control group on P7 and P14 respectively, the difference are statistically significant(Plt;0.05). Conclusions Minocycline appears to protect photoreceptor cell from apoptosis in the early stage of the retinal degeneration mice, but it may not completely prevent RP from occurrence.
ObjectiveTo investigate the feasibility of adipose-derived mesenchymal stem cells (ADMSCs) differentiating into corneal epithelium-like cells after transfection with Pax6 gene. MethodsThe adipose tissue from bilateral inguinal of healthy C57BL/6 mice (5-6 weeks old) was used to isolate and culture ADMSCs.The 3rd passage ADMSCs were subjected to treatments of non-transfection (group A),pcDNA3.1 empty vector transfection (group B),and recombinant plasmid of pcDNA3.1-Pax6 transfection (group C),respectively.At 48 hours after transfection,the cells in groups B and C were selected with G418.The cell morphology changes were observed under the inverted microscope.Pax6 protein and level of corneal epithelial cells specific molecular-cytokeratin 12 (CK-12) were measured by Western blot.Real-time fluorescence quantitative PCR was applied to measure the mRNA expression of CK-12. ResultsNo morphology change was observed in groups A and B.Two different cell clones were found in group C.No.1 selected clone showed a flagstone-like appearance that was similar to that of corneal epithelial cells;No.2 selected clone showed a net-like appearance,with 3-7 cell processes.The Western blot results showed the Pax6 protein expression in 2 clones of group C,but no expression in groups A and B; and CK-12 protein expression was only observed in No.1 selected clone of group C,and no expression in the others.The real-time fluorescence quantitative PCR results showed that the CK-12 mRNA expression level of No.1 selected clone of group C was 8.64±0.73,which was significantly higher than that of No.2 selected clone of group C (0.55±0.42),group B (1.36±0.40),and group A (1.00±0.00) (P<0.05),and there was no significant difference among groups A,B and No.2 selected clone of group C (P>0.05). ConclusionPax6 gene transfection could induce differentiation of ADMSCs into corneal epithelium-like cells which express CK-12 at both the mRNA and protein levels.This result provides a promising strategy of generating corneal epithelilcm-like cells for construction of tissue engineered cornea.
Objective To study the progressive development of the retinas through an observation on the histological changes of the retinas from neonatal mice of different day-ages. Methods The retinas from the mice of 1 to 20 days of age were examined by light microscopy,and from 1 to 3 days,by autoradiography. Results The retinas of the mice below 3 days of age only had the RPE cells layer,the neuroblast layer and the ganglion cell layer.With the increase in dayage,the retinas developed gradually and would be mature in the 20th day. Conclusions The retinas of mice is a kind of immature tissue before the 20th days,so it can be considered as transplantation donors. (Chin J Ocul Fundus Dis, 1999, 15: 174-176)
Objective To investigate the role and mechanism of heat shock protein 60 (HSP60) in induction of murine skin allograft tolerance. Methods At the age of 8-12 weeks, inbred female BALB/C (H-2d) mice (n=45) and CBA/N (H-2k)mice (n=15) were used as transplantation donors and C57BL/6 (H-2b) mice (n=60) as recipients. Recipients C57BL/6 (H-2b) mice were randomized into 4 groups (n=15). In group A, 1 cm × 1 cm Wolfe-Krause skin graft was excised from the back of BALB/C (H-2d) mice and hypoderma was scraped off aseptically, and then transplanted to the back of C57BL/6 (H-2b)mice. The method of skin transplantation in the other 3 groups was the same as to group A. In group B, C57BL/6 (H-2b) mice were treated with imcompleted Freund’s adjuvant (IFA) administration into the back 2 weeks before transplantation of BALB/C (H-2d) mice skin. In group C, C57BL/6 (H-2b) mice were administered HSP60 emulsified in IFA into the back 2 weeks before transplantation of BALB/C (H-2d) mice skin. In group D, C57BL/6 (H-2b) mice were treated with HSP60 emulsified in IFA into the back and followed by skin transplantation of CBA/N (H-2k) mice 2 weeks later. The delayed type hypersensitivity was determined 7 days after transplantation. One-way mixed lymphocyte reaction, the concentration of cytokines in the mixed lymphocyte reaction culture supernatant was determined 7 days and 25 days after transplantation. The survival time of skin allograft was observed. Results The survival time of skin allograft in groups A, B, C and D was 12.4 ± 0.5, 11.6 ± 0.8, 29.3 ± 2.6 and 27.6 ± 2.1 days, respectively. There was significant difference between groups A, B and groups C, D (P﹤0.05), while there was no significant difference between group A and group B as well as between group C and group D (P gt; 0.05). The counts of per minute impulse (cpm) of mixed lymphocyte reaction 7 days after transplantation in groups A, B, C and D was 12 836 ± 1 357, 11 876 ±1 265, 6 581 ± 573 and 6 843 ± 612, respectively. There was significant difference between groups A, B and group C and group D (P lt; 0.05), while there was no significant difference between group A and group B as well as between group C and group D (P gt; 0.05). The cpm of mixed lymphocyte reaction at 25 days after transplantation in group A, B, C and D was 13 286 ±1 498, 12 960 ± 1 376, 11 936 ± 1 265 and 12 374 ± 1269, respectively. There was no significant difference among 4 groups (P gt;0.05).The concentration of IL-10 in the mixed lymphocyte reaction culture supernatant in groups C, D were higher than that in groups A, B, and IL-2 and IFN-γ were lower than that in groups A, B 7 days after transplantation (P lt; 0.05), while there was no significant difference between group A and group B as well as between group C and group D (P gt; 0.05). There was no significant difference in cytokines among the 4 groups 25 days after transplantation (P gt; 0.05). The delayed type hypersensitivity in groups A, B, C and D 7 days after transplantation was 0.84 ± 0.09, 0.81 ± 0.07, 0.43 ± 0.05 and 0.46 ± 0.03 mm, respectively. There was significant differences between groups A, B and groups C, D (P lt; 0.05). While there was no significant difference between group A and group B as well as between group C and group D (P gt; 0.05). Conclusion HSP60 may play a role in induction and maintenance of murine skin allograft tolerance.
ObjectiveTo observe the effect of conditional knocking out (KO) vascular endothelial growth factor (VEGF) gene on the mouse model of oxygen induced retinopathy (OIR).MethodsThe conditional VEGF KO mice were generated using Cre-Loxp technology, resulting in the deletion of VEGF in a portion of Müller cells permanently in mouse retina. Cre positive was CKO mice, Cre negative was NKO mice. OIR was induced by keeping mice in 75% oxygen at postnatal 7 days (P7) to P12 and in room air from P12 to P17 (each 20 mice for CKO and NKO, respectively). The mice mortality was analyzed. At day P17, the percentage of retinal avascular area was calculated using retinal flat-mounting with fluorescence angiography, the number of vascular endothelial cell nucleus breaking through retinal inner limiting membrane was counted with hematoxylin eosin (HE) staining of retinal sections, and the expression of hypoxia-inducible factor-1α (HIF-1α) was detected by immunofluorescence analysis. ResultsDuring the development of OIR, the mortality rate of CKO mice (65.00%) was higher than that of NKO mice (30.00%) with the significant difference (x2=4.912, P=0.027). At day P17, all the mice retinas were harvested. The retinal fluorescence angiography displayed that the normal retinal vascularization of CKO mice was delayed, and large avascular areas were observed. Meanwhile, rare new vascular plexus was found in CKO mice and the thickness of whole retina decreased dramatically. In contrast, NKO mice developed larger area of normal retinal vascular network structure with higher blood vessel density and more new vascular plexus with obvious fluorescein leakage. The percentage of avascular area in CKO mice [(28.31±11.15)%] was higher than NKO mice [(16.82±7.23)%] with the significant difference (t=2.734, P=0.014). The HE staining of retinal sections indicated smaller counts of vascular endothelial cell nucleus breaking through retinal inner limiting membrane in CKO mice (26.10±6.37) when compared to NKO mice (28.80±7.59) , the difference was significant (t=2.437, P=0.016). The immunofluorescence analysis showed stronger expression of HIF-1α in CKO mice than NKO mice, which was mainly located in the retinal ganglion cell layer.ConclusionsThe local VEGF gene knockout partially inhibits retinal neovascularization in OIR mice. However, it also suppresses the normal retinal blood vascular development with a decrease of OIR mice survival ability.
Objective To observe the preventing effect of intraocular injection of Bevacizumab (Avastin) to retinal microvascular proliferation in non-obese diabetes mice. Methods In the study, thirty non-obese diabetes mice (NOD mice) were selected. The left eyes of mice were selected as treatment group with 1mu;l A vastin (25mg/1ml) injected, and right eyes were selected as control group with 1 mu;l saline injected. One week, one month, two months after injection, ten mice were selected randomly, and then enucleated two eyes, in which the retinal microvascular endothelial cells ultrastructure and immunohistochemistry of retinal CD34 and VEGF, were observed and measured. The differences of dense of positive sta ining between two groups were compared by digital image analysis. Results The positive expression of VEGF and CD34 were brown staining, and the positive staining of CD34 located in vascular endothelial cells. There was statistically significant difference in VEGF expression between two groups in 1 week and 1 month after injection(t=21.6, t=13.5; P<0.01), and no statistically significant difference in 2 months after injection (t=0.9, P>0.05). There was statistically significant difference in CD34 expression between two groups in 1 month and 2 months af ter injection(t=3.2, P<0.01; t=2.7, P<0.05) and no statistically significant difference in 1 week after injection(t=1.3, P>0.05). In every time point after injection, there was no obvious change in the microstructure of retinal vascular endothelial cells. Conclusion Intraocular injection of Avastin could prevent the abnormal proliferation of retinal microvascular in NOD mice. (Chin J Ocul Fundus Dis,2008,24:180-183)
Objective To construct specifically expressed vascular endothelial growth factor (VEGF)165 gene in retina. Methods Rho promoter, specifically expressed in retina, was amplified by polymerase chain reaction (PCR) from the genomic DNA of a BLAB/C rat, then it was cut with restriction enzymes and cloned into the plasmid pcDNA3.1+-VEGF165 to form recombinant plasmid pcDNA3.1+-rho-VEGF165. The correct recombinant plasmid pcDNA3.1+-rho-VEGF165 was identified by restriction enzymes and PCR, and was transferred by jetPEI into cultured human navel vein endothelial cells and human retinal pigment epithelial (RPE) cells. The expression of VEGF protein in human navel vein endothelial and RPE cells was detected by immunocytochemical staining and protraction of the growth curve of the cells. Results In human RPE cells, the expression of VEGF protein was more in recombinant plasmidpcDNA3.1+-rho-VEGF165 than that in plasmidpcDNA3.1+-rho-VEGF165 ; in human navel vein endothelial cells, no obvious difference of the expression of VEGF protein between recombinant plasmid pcDNA3.1+-rho-VEGF165 and plasmid pcDNA3.1+-rho-VEGF165 was found. Conclusions The construction of pcDNA3.1+-rho-VEGF165 carrier may provide the basic material for the study of the nosogenesis of VEGF in retinal neovascularization, and establish the foundation to set up the model of transgenic mice with VEGF specific expressing in retina. (Chin J Ocul Fundus Dis, 2005,21:106-108)
ObjectiveTo study the possibility of the C17.2 neural stem cells (NSCs) differentiating into neural cells induced by serum-free condition medium of olfactory ensheathing cells (OECs) and to detect the cell viability of the differentiated cells. MethodsOECs were isloated and cultured from the olfactory bulbs of 3-day-old postnatal mouse to prepare serum-free condition medium of OECs. After C17.2 NSCs were cultured with H-DMEM/F12 medium containing 15% FBS and the cell fusion reached 80%, the 3rd passage cells were induced by serum-free condition medium of OECs in the experimental group, by H-DMEM/F12 in the control group, and non-induced C17.2 NSCs served as the blank control group. The growth condition of cells was observed with inverted microscope. After 5 days, the immunofluorescence staining[microtubule-associated protein 2 (MAP-2) and β-tubulin-Ⅲ] and Western blot (Nestin, β-tubulin-Ⅲ, and MAP-2) were carried out to identify the neural cells derived from NSCs. The cell viabilities were measured by MTT assay and the quantity of lactate dehydrogenase (LDH) release in the medium. ResultsIn the experimental group, the C17.2 NSCs bodies began to contract at 24 hours after induction, and the differentiated cells increased obviously with long synapse at 3 days after induction; in the control group, the cell morphology showed no obvious change at 24 hours, cell body shrinkage, condensation of nuclear chromatin, and lysis were observed at 3 days. The immunofluorescence staining showed that β-tubulin-Ⅲ and MAP-2 of C17.2 NSCs were positive at 5 days after induction, and Western blot suggested that the expression of Nestin protein declined significantly and the expressions of β-tubulin-Ⅲ and MAP-2 protein were increased in the experimental group, showing significant differences when compared with those in the control group and blank control group (P<0.05). The LDH release and the cell viability were 130.60%±6.86% and 62.20%±3.82% in the experimental group, and were 178.20%±5.44% and 18.00%±3.83% in the control group respectively, showing significant differences between 2 groups (P<0.05). The LDH release and the cell viability of experimental group and control group were significantly lower than those of blank control group (100%) (P<0.05). ConclusionNeurotrophic factors from OECs play an important role in inducing C17.2 NSCs differentiation into neural cells and keeping the viability of differentiated cells after induction.
OBJECTIVE:To examine the possibility of allogenic neural retinal transplantation. METHODS:Donor neural retinal tissue obtained from neonatal mice was implanted into the subretlnal space of 36 adult mice. Twelve recipients were sacrificed at day 6,day 12,and day 18 post-transplantation respectively, and the eyes were enucleated for histologic examination. RESULTS: The graft was failed to be found but the host retina remained normal in 16.7%(6/36),the graft was found survival and showed further differentiation into rosette formation in the host subretinal space and inner retina in 66.7%(24/36),in the vitreous cavity in 8.3% (3/36). Disastrous granulomatous inflammation occurred in 8.3%(3/36). CONCLUSION: Allogenic retina from neonatal mice implanted into the subretinal space might experience immune privilege .in a great extent ,and showed further differentiation during the experimental periods of time. (Chin J Ocul Fundus Dis,1996,12: 236-238 )
Objective Isoflurane has an acute preconditioning effectiveness against ischemia in kidney, but this beneficial effectiveness can only last for 2-3 hours. To investigate whether isoflurane produces delayed preconditioningagainst renal ischemia/reperfusion (I/R) injury, and whether this process is mediated by hypoxia inducible factor 1α(HIF- 1α). Methods A total of 52 male C57BL/6 mice were randomly assigned to 4 groups (n=13 in each group): the controlgroup (group A), PBS/isoflurane treated group (group B), scrambled small interference RNA (siRNA)/isoflurane treated group (group C), and HIF-1α siRNA/isoflurane treated group (group D). In groups C and D, 1 mL RNase-free PBS containing 50 μg scrambled siRNA or HIF-1α siRNA was administered via tail vein 24 hours before gas exposure, respectively. Equivalent RNasefree PBS was given in groups A and B. Then the mice in groups B, C, and D were exposed to 1.5% isoflurne and 25%O2 for 2 hours; while the mice in group A received 25%O2 for 2 hours. After 24 hours, 5 mice in each group were sacrificed to assesse the expressions of HIF-1α and erythropoietin (EPO) in renal cortex by Western blot. Renal I/R injury was induced with bilateral renal pedicle occlusion for 25 minutes followed by 24 hours reperfusion on the other 8 mice. At the end of reperfusion, the serum creatinine (SCr), the blood urea nitrogen (BUN), and the histological grading were measured. Results The expressions of HIF-1α and EPO in groups B and C were significantly higher than those in group A (P lt; 0.01). The concentrations of SCr and BUN in groups B and C were significantly lower than those in group A, as well as the scores of tubules (P lt; 0.01), and the injury of kidney was amel iorated noticeably in groups B and C. The expressions of HIF-1α and the concentrations of SCr and BUN in group D were significantly lower than those in group A (P lt; 0.01). Compared with groups B and C, the expression of HIF- 1α and EPO in group D decreased markedly (P lt; 0.01), the concentrations of SCr and BUN were increased obviously, as well asthe scores of tubules (P lt; 0.01), and the renal injury was aggratived significantly. Conclusion Isoflurane produces delayed preconditioning against renal I/R injury, and this beneficial effectiveness may be mediated by HIF-1α.