ObjectiveTo introduce the application of mixed reality technique to the preoperative and intraoperative pulmonary nodules surgery.MethodsOne 49-year female patient with multiple nodules in both lobes of the lung who finally underwent uniportal thoracoscopic resection of superior segment of left lower lobe and wedge resection of left upper lobe was taken as an example. The Mimics medical image post-processing software was used to reconstruct the patient's lung image based on the DICOM data of the patient's chest CT image before the surgery. The three-dimensional reconstructed image data was imported into the HoloLens glasses, and the preoperative discussions were conducted with the assistance of mixed reality technology to formulate the surgical methods, and the preoperative conversation with the patients was also conducted. At the same time, mixed reality technology was used to guide the surgery in real time.ResultsMixed reality technology can clearly pre-show the important anatomical structures of blood vessels, trachea, lesions and their positional relationship. With the help of mixed reality technology, the operation went smoothly. The total operation time was 49 min, the precise dorsal resection time was 27 min, and the intraoperative blood loss was about 39 mL. The patient recovered well and was discharged from hospital smoothly after surgery.ConclusionMixed reality technology has certain application value before and during the surgery for pulmonary nodules. The continuous maturity of this technology and its further application in clinics will not only bring a new direction to the development of thoracic surgery, but also provide a wide prospect.
Mixed reality is a new digital hologram technology after virtual reality and augmented reality, which combines the real world with the virtual world to form a new visualization environment. At present, mixed reality has been applied in various fields, but its application in medical field is still in the exploratory stage. With the rapid development of the digital age, the prospect of the combination of mixed reality and medicine is boundless. It is believed that mixed reality will bring subversive changes in medical training, disease diagnosis, doctor-patient communication, clinical diagnosis, treatment and so on in the near future. In this paper, the application of mixed reality in medicine was summarized.
Mixed reality technology is new digital holographic imaging technology that generates three-dimensional simulation images through computers and anchors the virtual images to the real world. Compared with traditional imaging diagnosis and treatment methods, mixed reality technology is more conducive to the advantages of precision medicine, helps to promote the development of medical clinical application, teaching and scientific research in the field of orthopedics, and will further promote the progress of clinical orthopedics toward standardization, digitization and precision. This article briefly introduces the mixed reality technology, reviews its application in the perioperative period, teaching and diagnosis and treatment standardization and dataization in the field of orthopedics, and discusses its technical advantages, aiming to provide a reference for the better use of mixed reality technology in orthopedics.
Objective To explore the feasibility and effectiveness of mixed reality technology for localizing perforator vessels in the repair of mandibular defects using free fibular flap. Methods Between June 2020 and June 2023, 12 patients with mandibular defects were repaired with free fibular flap. There were 8 males and 4 females, with an average age of 61 years (range, 35-78 years). There were 9 cases of ameloblastomas and 3 cases of squamous cell carcinomas involving the mandible. The disease duration ranged from 15 days to 2 years (median, 14.2 months). The length of mandibular defects ranged from 5 to 14 cm (mean, 8.5 cm). The area of soft tissue defects ranged from 5 cm×4 cm to 8 cm×6 cm. Preoperative enhanced CT scans of the maxillofacial region and CT angiography of the lower limbs were performed, and the data was used to create three-dimensional models of the mandible and lower limb perforator vessels. During operation, the mixed reality technology was used to overlay the three-dimensional model of perforator vessels onto the body surface for harvesting the free fibular flap. The length of the fibula harvested ranged from 6 to 15 cm, with a mean of 9.5 cm; the size of the flap ranged from 6 cm×5 cm to 10 cm×8 cm. The donor sites were sutured directly in 7 cases and repaired with free skin grafting in 5 cases. Results Thirty perforator vessels were located by mixed reality technology before operation, with an average of 2.5 vessels per case; the distance between the exit point of the perforator vessels located before operation and the actual exit point ranged from 1 to 4 mm, with a mean of 2.8 mm. All fibular flaps survived; 1 case had necrosis at the distal end of flap, which healed after dressing changes. One donor site had infection, which healed after anti-inflammatory dressing changes; the remaining incisions healed by first intention, and the grafts survived smoothly. All patients were followed up 8-36 months (median, 21 months). The repaired facial appearance was satisfactory, with no flap swelling. Among the patients underwent postoperative radiotherapy, 2 patients had normal bone healing and 1 had delayed healing at 6 months. Conclusion In free fibular flap reconstruction of mandibular defects, the use of mixed reality technology for perforator vessel localization can achieve three-dimensional visualization, simplify surgical procedures, and reduce errors.