Uncovering the alterations of neural interactions within the brain during epilepsy is important for the clinical diagnosis and treatment. Previous studies have shown that the phase-amplitude coupling (PAC) can be used as a potential biomarker for locating epileptic zones and characterizing the transition of epileptic phases. However, in contrast to the θ-γ coupling widely investigated in epilepsy, few studies have paid attention to the β-γ coupling, as well as its potential applications. In the current study, we use the modulation index (MI) to calculate the scalp electroencephalography (EEG)-based β-γ coupling and investigate the corresponding changes during different epileptic phases. The results show that the β-γ coupling of each brain region changes with the evolution of epilepsy, and in several brain regions, the β-γ coupling decreases during the ictal period but increases in the post-ictal period, where the differences are statistically significant. Moreover, the alterations of β-γ coupling between different brain regions can also be observed, and the strength of β-γ coupling increases in the post-ictal period, where the differences are also significant. Taken together, these findings not only contribute to understanding neural interactions within the brain during the evolution of epilepsy, but also provide a new insight into the clinical treatment.