Objective To investigate the distribution of rats’ pelvic muscles motoneurons innervated by artifical somatic-autonomic reflex arc. Methods Thirty-five SD rats were randomly divided into normal group (n=10) and model group (n=25). The rats in the normal group were given no treatment. In the normal group, the artifical somatic-autonomic reflex arc was established. Six months after establishing the model, external urethral sphincter (EUS), ischiocavernosus (IC), bulbocavernosus (BS) and external anal sphincter (EAS) of the rats in normal group(n=10) and of the rats in model group A (n=20) were injected with fluorogold (FG). The reversal neural tracing was done. FG positive neural cells were observedby fluorescent microscope. Malt agglutinator binding horseradish peroxidase (WGA-HRP) was injected into L4 spinal cord of the rats in model group B (n=5) as the anterograde tracer. After being treated with TMB-HRP reaction, the axon endings in the neuromuscular junction in pelvic striated muscles (EUS, IC, BS, EAS) were investigated with light microscopes. Results In normal group, EUS and IC injections resulted in transport of FG to neurons in the dorsolateral nucleus (DL) of the ventral horn of the L5~S1, and BS and EAS in the dorsomedial nucleus (DM) of ventral horn in the L5~S1. In the model group A, EUS, IC, BS andEAS injections resulted in transport of FG to neurons in the left ventral horn in the L4. In model group B, after WGA-HRP was injected into the L4 left ventral horn, HRP positive axon terminals were observed in the EUS, IC, BS and EAS. Conclusion In the normal rats, the pelvic striated muscles motoneurons locate in the ventral horn of L5~S1. In the model rats, the pelvic striated muscles motoneurons innervated by artificial somatic-autonomic reflex arc locate in the ventral horn of the L4. After the artificial somaticautonomic reflex arc is established, the isomerous nerve fiber innervates EUS, IC, BS and EAS.
Objective To review research progress of the relation between glial cell line-derived neurotropic factor (GDNF) and motoneuron development and motoneuron disease. Methods The recent articles on GDNF and motonerons were extensively reviewed. The molecular structure, the mode of action and the route of administration of GDNF were investigated. Results GDNF plays extensive roles in the development anddisease of motoneuron. GDNF might regulate the development of the motonerons of the spinal cord to some extent and also save the injured motoneurons. Conclusion GDNF has a potential clinical value and inestimable futurein the treatment of motoneuron diseases.
OBJECTIVE: To purify and study Schwann cells cytoplasmic neurotrophic protein. METHODS: The dissociated SC taken from 300 newborn rats sciatic nerves were cultured, collected, ultrasonicated and ultraspeed centrifuged. The supernates were ultrafiltrated and concentrated by using ultrafiltration units with PM10, PM30, PM50 ultrafiltration membranes. The ultrafiltrated-concentrated solution with the protein molecular weight 10-30 ku, 30-50 ku and gt; 50 ku were collected respectively. The dissociated spinal cord motoneurons of 14 days embryonic rats were cultured with serum-free conditional medium and the additional SC cytoplasmic proteins were added into the medium. The results showed that the 10-30 ku and gt; 50 ku SC cytoplasmic proteins were able to maintain the survival of motoneurons for 24 hours. Then the 26 ku and 58 ku proteins were further extracted and purified from SC cytoplasm by high pressure liquid chromatography, and their neurobiological activities were studied. RESULTS: The 26 ku and 58 ku Schwann cell’s cytoplasmic proteins were able to maintain the survival of motoneurons cultured in the serum-free medium for 48 hours. The highest biological activity concentration is 20 ng per well. CONCLUSION: Schwann cells cytoplasm contains motoneuron neurotrophic proteins with molecular weight 26 ku and 58 ku.
OBJECTIVE: To study the effects of Schwann cell cytoplasmic derived neurotrophic proteins (SDNF) on the regeneration of peripheral nerve in vivo. METHODS: Ninety adult SD rats were chosen as the experimental model of degenerated muscle graft with vascular implantation bridging the 10 mm length of right sciatic nerve. They were divided randomly into three groups, 30 SD rats in each groups. 25 microliters of 26 ku SDNF (50 micrograms/ml, group A), 58 ku SDNF (50 micrograms/ml, group B) and normal saline(group C) were injected respectively into the proximal, middle and distal part of the degenerated muscle grafts at operation, 7 and 14 days postoperatively. The motorial function recovery assessment was carried out every 15 days with the sciatic nerve function index(SFI) after 15 days to 6 months of operation. Histological and electrophysiological examination of regenerating nerve were made at 1, 3 and 6 months postoperatively. RESULTS: There were significant statistic differences between the both of experimental groups(group A and B) and control group(group C) in the respects of the histological, electrophysiological examination and SFI(P lt; 0.01). CONCLUSION: The 26 ku SDNF and 58 ku SNDF can improve the regeneration of the injured peripheral nerve in vivo.
OBJECTIVE: To explore the mechanism of tissue specificity of neurotropism in peripheral nerve regeneration, we investigated the biological characteristics of the nerve regeneration conditioned fluids(NRCF) on motoneuron of SD rats cultured in vitro. METHODS: Silicon chambers were sutured respectively to the distal stumps of motorial branch of femoral nerve and saphenous nerve to collect NRCF, namely MD-NRCF and SD-NRCF. The rats cortex motoneuron were divided into 4 groups and cocultured with MD-NRCF, SD-NRCF, b-FGF and serum-free medium respectively. The cultured cells were photoed under phase-contrast microscope, their longest neurites and cell-body areas were measured by cell image processing computer system. MTT automated colorimetric microassay was also adopted to quantify the activation of cultured motoneurons in each group. RESULTS: Cells of MD-NRCF group had longer neurites than those of the other three groups, and their activation was also superior to those of the other groups. CONCLUSION: The results suggest that MD-NRCF has more significantly neurite-promoting and neurobiological effects on motoneuron than SD-NRCF and b-FGF.
OBJECTIVE To study the protective effects of Schwann cell derived neurotrophic factor (SDNF) on motoneurons of spinal anterior horn from spinal root avulsion induced cell death. METHODS Twenty SD rats were made the animal model of C6.7 spinal root avulsion induced motoneuron degeneration, and SDNF was applied at the lesion site of spinal cord once a week. After three weeks, the C6.7 spinal region was dissected out for motoneuron count, morphological analysis and nitric oxide synthase (NOS) enzyme histochemistry. RESULTS 68.6% motoneurons of spinal anterior horn death were occurred after 3 weeks following surgery, the size of survivors was significantly atrophy and NOS positive neurons increased. However, in animals which received SDNF treatment, the death of motoneurons was significantly decreased, the atrophy of surviving motoneurons was prevented, and expression of NOS was inhibited. CONCLUSION SDNF can prevent the death of motoneurons following spinal root avulsion. Nitric oxide may play a role in these injury induced motoneuron death.