west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Multi-scale feature" 3 results
  • A three dimensional convolutional neural network pulmonary nodule detection algorithm based on the multi-scale attention mechanism

    Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.

    Release date: Export PDF Favorites Scan
  • Multimodal high-grade glioma semantic segmentation network with multi-scale and multi-attention fusion mechanism

    Glioma is a primary brain tumor with high incidence rate. High-grade gliomas (HGG) are those with the highest degree of malignancy and the lowest degree of survival. Surgical resection and postoperative adjuvant chemoradiotherapy are often used in clinical treatment, so accurate segmentation of tumor-related areas is of great significance for the treatment of patients. In order to improve the segmentation accuracy of HGG, this paper proposes a multi-modal glioma semantic segmentation network with multi-scale feature extraction and multi-attention fusion mechanism. The main contributions are, (1) Multi-scale residual structures were used to extract features from multi-modal gliomas magnetic resonance imaging (MRI); (2) Two types of attention modules were used for features aggregating in channel and spatial; (3) In order to improve the segmentation performance of the whole network, the branch classifier was constructed using ensemble learning strategy to adjust and correct the classification results of the backbone classifier. The experimental results showed that the Dice coefficient values of the proposed segmentation method in this article were 0.909 7, 0.877 3 and 0.839 6 for whole tumor, tumor core and enhanced tumor respectively, and the segmentation results had good boundary continuity in the three-dimensional direction. Therefore, the proposed semantic segmentation network has good segmentation performance for high-grade gliomas lesions.

    Release date: Export PDF Favorites Scan
  • Non-rigid registration for medical images based on deformable convolution and multi-scale feature focusing modules

    Non-rigid registration plays an important role in medical image analysis. U-Net has been proven to be a hot research topic in medical image analysis and is widely used in medical image registration. However, existing registration models based on U-Net and its variants lack sufficient learning ability when dealing with complex deformations, and do not fully utilize multi-scale contextual information, resulting insufficient registration accuracy. To address this issue, a non-rigid registration algorithm for X-ray images based on deformable convolution and multi-scale feature focusing module was proposed. First, it used residual deformable convolution to replace the standard convolution of the original U-Net to enhance the expression ability of registration network for image geometric deformations. Then, stride convolution was used to replace the pooling operation of the downsampling operation to alleviate feature loss caused by continuous pooling. In addition, a multi-scale feature focusing module was introduced to the bridging layer in the encoding and decoding structure to improve the network model’s ability of integrating global contextual information. Theoretical analysis and experimental results both showed that the proposed registration algorithm could focus on multi-scale contextual information, handle medical images with complex deformations, and improve the registration accuracy. It is suitable for non-rigid registration of chest X-ray images.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content