Objective To investigate the early change of brain-derived neurotrophic factor (BDNF) in denervated red and white muscles and the regeneration of nerves innervating the muscles and to discuss the effect of the target organs on regeneration of the injured nerves.Methods Forty Wistar rats were divided into 5 groups. The sciatic nerves in 4 groups were sheared to make the models of the denervated muscles and the other one as control group. The amount of BDNF in muscles was measured with immunohistochemistry 1 day, 3 days, 7 days and 14 days after injury. The models of the regeneration of the nerves were made in another 15 rats whose sciatic nerves were disconnected with forceps. The nerve conduction velocity and electromyogram were tested with neuroelectrophysiology7 days and 14 days after injury. Results The expression of BDNF in soleus increased significantly on the 1st day, the 3rd day and the 7th day (P<0.01); theexpression ingastrocnemius was lower, but there was no significant difference(P>0.05) on the 1st day, the 3rd day,the 7th day and the 14th day when compared with control group. After 14 days of injury in the nerves innervating GAS and SOL, the nerve conduction velocities and the amplitudes of wave M recovered to (36.60±7.40)% and (19.9±6.4)% of normal value, and (42.50±3.50)% and (13.7±4.0)% of normal value respectively; there were no significant differences between the two muscles(P>0.05).Conclusion There is- difference in BDNF amount between the denervated red and white muscles, but the recovery of the two kinds of the motornerves is similar,and the neurotrophism of denervated muscles was determined by all kinds of neurotrophic factors.
The automatic recognition technology of muscle fatigue has widespread application in the field of kinesiology and rehabilitation medicine. In this paper, we used surface electromyography (sEMG) to study the recognition of leg muscle fatigue during circuit resistance training. The purpose of this study was to solve the problem that the sEMG signals have a lot of noise interference and the recognition accuracy of the existing muscle fatigue recognition model is not high enough. First, we proposed an improved wavelet threshold function denoising algorithm to denoise the sEMG signal. Then, we build a muscle fatigue state recognition model based on long short-term memory (LSTM), and used the Holdout method to evaluate the performance of the model. Finally, the denoising effect of the improved wavelet threshold function denoising method proposed in this paper was compared with the denoising effect of the traditional wavelet threshold denoising method. We compared the performance of the proposed muscle fatigue recognition model with that of particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN). The results showed that the new wavelet threshold function had better denoising performance than hard and soft threshold functions. The accuracy of LSTM network model in identifying muscle fatigue was 4.89% and 2.47% higher than that of PSO-SVM and CNN, respectively. The sEMG signal denoising method and muscle fatigue recognition model proposed in this paper have important implications for monitoring muscle fatigue during rehabilitation training and exercise.
Objective To evaluate the application value of repairing the defects of the chest wall with the thoracico-abdominal skin flap and the muscle flap of the musculus rectus abdominis. Methods From January 2002 to June 2005, five patients with defects in the chest wall underwent the prothesis with the thoracico-abdominal skin flap and the muscle flap of the musculus rectus abdominis under general anesthesia. Focal cleaning was performed first; then, the skin flap was designed and taken (15 cm ×10 cm); and finally, the defects of the chest wall were repaired with the muscle flap of the musculus rectus abdominis. Results Of the 5patients, 4 had the flap healing by the first intention, and 1 had the delayed healing, with no complication. The skin flap had a good appearance, without edema orpigmentation. The X-ray examination showed that the shadow of the sternal sequestrum disappeared. There was no recurrence or complication during the follow-upfor 1-3 years (average, 18 mon). Conclusion The repairing of the defects in the chest wall with the thoracico-abdominal skin flap and the muscle flap of the musculus rectus abdominis is a simple and effective surgical treatment for defects of the chest wall around the sternum, and this kind of treatment is worth applying extensively in clinical practice.
Objective To observe the expressions of CXC chemokine receptor 4 (CXCR4) in muscle satell ite cells in situ of normal and cardiotoxin-intoxicated muscle tissues so as to further investigate the molecular mechanism involving inmuscle regeneration such as progressing muscular dystrophy (PMD) for seeking the way to cure muscle retrogression. Methods The muscle injured model of 12 C57 male mice was made by injecting cardiotoxin (5 μg per mouse) in left quadriceps femoris, their right quadriceps femoris was used as control without any injection. The histological, immunohistochemical analysis and RT-PCR were done to investigate the expression of CXCR4 in the quadriceps femoris in situ after 1 day, 4 days, 1 week, 2 weeks, 4 weeks and 6 weeks. Results HE staining results demonstrated that the muscle tissues experienced the process from muscle injury, repair to regeneration. The result of immunohistochemistry showed that the expressions of CXCR4 in injured muscle tissue were 1 955.6 ± 150.3, 2 223.2 ± 264.3, 2 317.6 ± 178.7, 3 066.5 ± 269.6, 1 770.9 ± 98.7 and 1 505.7 ± 107.1 at 1 day, 4 days, 1 week, 2 weeks, 4 weeks and 6 weeks after injection of cardiotoxin, there was significant difference when compared with normal muscle (640.3 ± 124.0, P lt; 0.001). The RT-PCR showed that the expressions of CXCR4 mRNA in injured muscle tissue were0.822 ± 0.013, 0.882 ± 0.025, 1.025 ± 0.028, 1.065 ± 0.041, 0.837 ± 0.011 and 0.777 ± 0.015 at 1 day, 4 days, 1 week, 2 weeks, 4 weeks and 6 weeks after injection of cardiotoxin, there was significant difference when compared with normal muscle (0.349 ± 0.006, P lt; 0.001). Conclusion CXCR4 may be the critical protein in the process of muscle impairment and reparation.
our patients with brachial plexus root arulsion, who had undergone various nerve operationswith no functional recovery of the limb, were treated with transfer of sternocledomastoid muscle toreconstruct the function of elbow fleaion. The sternocleidomastoid muscle was datached from itsincertions and was lengthened by fascia lata graft from the thigh , and then , was transferred under theclavicle to the radiai shaft just distal to the radial tuberosity. After the recostruction, The potient...
ObjectiveTo observe the effect of Mongolian medicine fumigation combined with sciatic nerve and rectal probe electrical stimulation on muscle spasticity of spinal cord injury.MethodsBetween January 2012 and January 2018, a total of 65 patients with muscle spasticity after spinal cord injury were randomly divided into two group: the observation group (32 cases) and the control group (33 cases). The patients in the observation group were treated with Mongolian medicine (Wu Wei Gan Lu-Decoction) fumigation combined with sciatic nerve and rectal probe electrical stimulation, while the patients in the control group were treated with medicine, physical therapy, and exercise therapy. Both two groups were treated for 8 weeks. The patients were scored with Ashworth Score, American Spinal Injury Association (ASIA) score, and Barthel Index before and after treatment.ResultsThe pre-treatment ASIA scores (light touch sensation, pain sensation, and muscle strength) and Barthel Index of the two groups were not statistically significant (P>0.05). The post-treatment ASIA scores and Barthel Index of both groups performed significantly better than the pre-treatment levels (P<0.05). The post-treatment ASIA muscle strength item was 58.55±10.83 in the observation group and 50.69±11.32 in the control group (P<0.05). The post-treatment Barthel Index was 74.22±11.53 in the observation group and 68.46±9.92 in the control group (P<0.05). The effective rate in the observation group was significantly better than that in the control group (84.4% vs. 60.6%, P<0.05). Conclusion Mongolian medicine fumigation combined with sciatic nerve and rectal probe electric stimulation could improve the muscle spasticity of spinal cord injury and patients’ ability of daily life effectively.
To evaluate the value of clinical application of examination of fibrillation potential amplitude, 110 patients, 97 males and 13 females, were examined and only the maximum fibrillation potential amplitudes were recorded in 420 muscles. The results showed that there was no significant difference between sexes, ages and sides. However, significant difference was evident between the groups of different frequency (1+ to 4+). The fibrillation potential amplitude was maximum at 3 to 4 months after denervation and still remained at relatively high level for years in certain patients. No significant difference was showed between the time groups in incomplete nerve injuries. Surgery did not affect the course of fibrillation potential amplitude change. It was suggested that the muscle cells sustained their property for years after denervation in some patients, thus it might explain that satisfactory result could be obtained from operative repair in some late cases. The changes of fibrillation potential amplitude might indicate that the changes from muscle denervation was still reversible and might be more accurate than traditional method of examination.
Objective To investigate the effect of Ligustrazine on the expressions of FoXO3a, MAFbx, and MuRF1 indenervated skeletal muscle atrophy rats. Methods Fifty-four 8-week-old female Sprague Dawley rats were randomly dividedinto 3 groups: normal control group (group A, n=6), denervated control group (group B, n=24), and Ligustrazine interventiongroup (group C, n=24). After the denervated gastrocnemius models were established in the rats of groups B and C, sal ine andLigustrazine [80 mg/(kg·d)] were given every day by intraperitoneal injection, respectively. However, no treatment was donein group A. At 2, 7, 14, and 28 days after denervation, the wet weight of gastrocnemius was measured to calculate the ratio ofwet weight. The mRNA and protein expression levels of FoXO3a, MAFbx, and MuRF1 were detected by RT-PCR and Westernblot. Results The ratio of gastrocnemius wet weight decreased with time after denervation in groups B and C, showingsignificant differences when compared with that of group A (P lt; 0.05), and group C were significantly higher than that of groupB at 7, 14, and 28 days (P lt; 0.05). The mRNA and protein expressions of FoXO3a, MAFbx, and MuRF1 in groups B and Cwere significantly higher than those in group C at 7, 14, and 28 days (P lt; 0.05), and group C was significantly lower than groupB (P lt; 0.05). Conclusion Ligustrazine may postpone denervated skeletal muscle atrophy by reducing mRNA and proteinexpressions of FoXO3a, MAFbx, and MuRF1.
On the basis of laboratory research of the reinnervation of poralyysed musele by implanting muscle bundies with neurovascular pedicle ( NVMBI),this method was applied clinically to trcat paralysed musele on extremities and trunks with quite satisfactory result.Detail description of preoperative exammation,operation design,surgical procedure and potoperative management were presented。the mechanism and reason of the good result were dscussed. The anatomical characteristics of the NVMBI we...
Objective To compare the long-term results between theMckay procedure and the musclestrength balancing procedure in treatment of congenital clubfoot (CCF).Methods Thirty-seven children with 54 clubfeet were treated by the muscle-strength balancing procedure (31 feet) or the Mckay procedure (23 feet).There were 27 males (38 feet) and 10 females (16 feet). The average age at the time of surgery was 1.2 years (range, 5 months to 3.5 years). The deformity occurred on the left side in 7 patients, on the right side in 13, and on both sides in 17. During the musclestrength balancing procedure, the anterior tibial tendonwas transplanted to the middle or the lateral cuneiform, and the Achilles tendon was lengthened. During the Mckay procedure, the complete releasing of the softtissues and the lengthening of the tendons were performed routinely; in addition, the abductor hallucis was also excised. The clinical outcomes were evaluated with the Diméglio classification method. According to the Diméglio scoring system, 3 clubfeet were at Grade Ⅱ (score, 6-10); 26 clubfeet at Grade Ⅲ (score, 11-15); 25 clubfeet at Grade Ⅳ (score, 16-20). Based on the Diméglio grading system, all the patients were divided into two groups before operation. Group Aconsisted of 29 feet at Grade Ⅱ or Ⅲ (score, 12.55±1.84); Group B consistedof 25 feet at Grade Ⅳ (score, 17.20±1.08). The score in the group undergoingthe musclestrength balancing procedure was 14.16±2.83, and the score in the group undergoing the Mckay procedure was 15.43±2.63. Results All the patients were followed up for an average of 8.2 years (range, 5.0-10.5 years). According to the Diméglio grading system, 32 patients were at Grade Ⅰand 22 patients at Grade Ⅱ, and none of the patients at Grade Ⅲ or Ⅳ. Two patients undergoing the Mckay procedure developed the postoperative incision infection, but the incision wound healed after the dressing changes. The Diméglio score was 4.07±1.25 in Group A and 6.52±1.74 in Group B after operation, with a significant difference when compared with before operation (Plt;0.05). In Group A the two procedureshad no significant difference in effectiveness (Pgt;0.05); however, in Group B they had a significant difference (Plt;0.05). Judging by the correction degrees for the deformity on the different planes, the two procedures had no significant difference for correcting the equinus of hind foot (Pgt;0.05); however, in the correction degrees for the cross-foot and supination or adduction of the anterior foot, the Mckay procedure was significantly finer than the muscle-strength balancing procedure. It has a good biocompatibility. The mechanical test has showed that the Mckay procedure had the best result in the correction of the forefoot adduction. Conclusion For treatment of congenital clubfoot at Grades Ⅰ-Ⅲ, the musclestrength balancing procedure can achieve an excellent correction result; for treatment of congenital clubfoot at Grade Ⅳ, the Mckay procedure should be performed. No matter whichprocedure, the abductor hallucis excision is recommended to prevent poor correction for the anterior foot adduction.