west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Muscle atrophy" 9 results
  • ANATOMICAL STUDY ON CONTRALATERAL C7 ROOT TRANSFER FOR RECOVERY OF FOREARM FLEXOR FUNCTION IN REPAIRING OF BRACHIAL PLEXUS AVULSION

    Objective To provide the anatomical basis of contralateral C7 root transfer for the recovery of the forearm flexor function. Methods Thirty sides of adult anti-corrosion specimens were used to measure the length from the end of nerves dominating forearm flexor to the anastomotic stoma of contralateral C7 nerve when contralateral C7 nerve transfer was used for repair of brachial plexus lower trunk and medial cord injuries. The muscle and nerve branches were observed. The length of C7 nerve, C7 anterior division, and C7 posterior division was measured. Results The length of C7 nerve, anterior division, and posterior division was (58.8 ± 4.2), (15.4 ± 6.7), and (8.8 ± 4.4) mm, respectively. The lengths from the anastomotic stoma to the points entering muscle were as follow: (369.4 ± 47.3) mm to palmaris longus, (390.5 ± 38.8) mm (median nerve dominate) and (413.6 ± 47.4) mm (anterior interosseous nerve dominate) to the flexor digitorum superficialis, (346.2 ± 22.3) mm (median nerve dominate) and (408.2 ± 23.9) mm (anterior interosseous nerve dominate) to the flexor digitorum profundus of the index and the middle fingers, (344.2 ± 27.2) mm to the flexor digitorum profundus of the little and the ring fingers, (392.5 ± 29.2) mm (median nerve dominate) and (420.5 ± 37.1) mm (anterior interosseous nerve dominate) to the flexor pollicis longus, and (548.7 ± 30.0) mm to the starting point of the deep branch of ulnar nerve. The branches of the anterior interosseous nerve reached to the flexor hallucis longus, the deep flexor of the index and the middle fingers and the pronator quadratus muscle, but its branches reached to the flexor digitorum superficials in 5 specimens (16.7%). The branches of the median nerve reached to the palmaris longus and the flexor digitorum superficial, but its branches reached to the deep flexor of the index and the middle fingers in 10 specimens (33.3%) and to flexor hallucis longus in 6 specimens (20.0%). Conclusion If sural nerve graft is used, the function of the forearm muscles will can not be restored; shortening of humerus and one nerve anastomosis are good for forearm flexor to recover function in clinical.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • EFFECT OF LIGUSTRAZINE ON EXPRESSIONS OF FoXO3a, MAFbx, AND MuRF1 IN DENERVATED SKELETALMUSCLE ATROPHY RATS/

    Objective To investigate the effect of Ligustrazine on the expressions of FoXO3a, MAFbx, and MuRF1 indenervated skeletal muscle atrophy rats. Methods Fifty-four 8-week-old female Sprague Dawley rats were randomly dividedinto 3 groups: normal control group (group A, n=6), denervated control group (group B, n=24), and Ligustrazine interventiongroup (group C, n=24). After the denervated gastrocnemius models were established in the rats of groups B and C, sal ine andLigustrazine [80 mg/(kg·d)] were given every day by intraperitoneal injection, respectively. However, no treatment was donein group A. At 2, 7, 14, and 28 days after denervation, the wet weight of gastrocnemius was measured to calculate the ratio ofwet weight. The mRNA and protein expression levels of FoXO3a, MAFbx, and MuRF1 were detected by RT-PCR and Westernblot. Results The ratio of gastrocnemius wet weight decreased with time after denervation in groups B and C, showingsignificant differences when compared with that of group A (P lt; 0.05), and group C were significantly higher than that of groupB at 7, 14, and 28 days (P lt; 0.05). The mRNA and protein expressions of FoXO3a, MAFbx, and MuRF1 in groups B and Cwere significantly higher than those in group C at 7, 14, and 28 days (P lt; 0.05), and group C was significantly lower than groupB (P lt; 0.05). Conclusion Ligustrazine may postpone denervated skeletal muscle atrophy by reducing mRNA and proteinexpressions of FoXO3a, MAFbx, and MuRF1.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • MAFbx EXPRESSION AFTER FREE MUSCLE TRANSPLANTATION AND ITS RELATIONSHIP WITH MUSCLE FUNCTION

    Objective To study the quantitative changes of ubiquitin l igase MAFbx mRNA and protein expression, muscle atrophy and muscle function following free muscle transplantation and to explore relationshi ps among them. Methods Thirty-six female SD rats, SPF grade, weighing (250 ± 25) g, were used. One hind l imb of the rat was randomly selected as experimental side to receive in situ free gracil is muscle transplantation, and the counterlateral hind l imb underwent no operation serving as control side. General condition of the rats was observed after operation. Muscle contractivecapacity and muscle wet weight maintenance rate of the experimental and the control side were detected 1, 2, 4, 10, 15, and 30 weeks after operation, and 6 rats were killed at each time point. Meanwhile, HE staining was performed to observe muscle fibre cross-sectional area, real-time quantitative PCR was appl ied to detect relative expression of MAFbx/Atrogin-1 mRNA, and Western blot test was used to observe MAFbx protein expression. Results All rats survived till the end of the experiment, all incisions healed well, and no dysfunction occurred in the experimental sides. The value of muscle contractive capacity, muscle wet weight maintenance rate, muscle’s maximal force of single contraction, and muscle’s maximal force of tetanic contraction in the experimental sides dramatically decreased in the first 4 weeks after operation and increased gradually over 4 to 30 weeks. The MAFbx mRNA expression of the experimental sides peaked and was seven times greater than the control sides 2 weeks after operation, then the value gradually decreased over 15 to 30 weeks after operation and was 1.1 to 1.5 times greater than the control sides, and significant difference was evident between the experimental sides and the control sides at each time point (P lt; 0.05). Significant difference was evident between the experimental sides and the control sides in terms of MAFbx protein expression of the muscle 1 to 15 weeks after operation according to the Western blot result (P lt; 0.05), and no significant difference was noted at 30 weeks (P gt; 0.05). The correlation coefficient between muscle wet weight maintenance rate and muscle’s maximal force of single contraction maintenance rate was 0.95, between muscle wet weight maintenance rate and muscle’s maximal force of tetanic contraction maintenance rate was 0.75, between muscle fibre cross-sectional area recovery rate and muscle’s maximal force of single contraction maintenance rate was 0.93, and between muscle fibre cross-sectional area recovery rate and muscle’s maximal force of tetanic contraction maintenance rate was 0.68 (P lt; 0.05). The correlation coefficient between MAFbx mRNA expression and the parameter of muscle wet weight maintenance rate, muscle fibre cross-sectional area recovery rate, muscle’s maximal force of single contraction maintenance rate, and muscle’s maximal force of tetanic contraction maintenance rate was — 0.62 (P lt; 0.05), — 0.45 (P gt; 0.05), — 0.72 (P lt; 0.05) and — 0.78 (P lt; 0.05), respectively; the correlation coefficient between MAFbx protein relative expression and the parameter of muscle wet weight maintenance rate, muscle fibre cross-sectional area recovery rate, muscle’s maximal force of single contraction maintenance rate, and muscle’s maximal force of tetanic contraction maintenance rate was — 0.95 (P lt; 0.05), — 0.82 (P lt; 0.05), — 0.89 (P lt; 0.05), and — 0.54 (P gt; 0.05), respectively. Conclusion Decrease of muscle function after transplantation correlates closely with muscle atrophy. The high expression of MAFbx mRNA and protein, especially their persistent increases from 4 to 15 weeks after nerve reinnervation, is a junction between the muscle atrophy and thedecrease of muscle function.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON NEURAL STEM CELL TRANSPLANTATION DELAYING DENERVATED MUSCLEATROPHY

    Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON EFFECT OF IMPLANTING bFGF INTO DENERVATED SKELETAL MUSCLE TO MUSCLE SATELLITE CELL PROLIFERATION AND MUSCLE ATROPHY/

    Objective To investigate the effect of bFGF on denervated skeletal muscle in accelerating muscle satell ite cell prol iferation, supplying neurotrophic factors and reducing muscle atrophy. Methods Twenty-eight Wistar male rats weredivided into the experimental group and the control group randomly, whose left lower l imb sciatic nerve was excised to make animal models of denervated skeletal muscle. The sil ia gel tubes containing 0.1 g bFGF and normal sal ine were implanted into gastrocnemius in the experimental and control groups, respectively. After 14 and 30 days of operation, gross appearance was observed; muscle wet weight and potential ampl itude of gastrocnemius fibrillation were measured; histological observation and electron microscope observation were made. Results At 14 and 30 days after operation, gastrocnemius atrophy and adhesion were more obvious in the control group than those in the experimental group. At 30 days after operation, the potential amplitude of gastrocnemius fibrillation and muscle wet weight were experimental group (0.220 6 ± 0.301 0) μm and (2.475 7 ± 0.254 6) g in the experimental group, and (0.155 2 ± 0.050 3) μm and (1.459 1 ± 0.642 5) g in the control group. There was a significant difference between two groups (P lt; 0.05). At 14 and 30 days after operation, HE staining showed more muscle satell ite cell nucleiin gastrocnemius of the experimental group than that of the control group; Mallory staining showed more blue connective tissues in the control group than in the experimental group; PCNA staining showed more PCNA positive cell nuclei in the experimental group than in the control group; and the AgNO3 staining testified more grains of vitamin C and less connective tissue proliferation in the experimental group than in the control group. At 30 days after operation, the fiber diameter and the fiber area were (66.368 6 ± 12.672 7) μm and (2 096.112 9 ± 311.563 9) μm2 in the experimental group, (55.504 0 ± 4.945 0) μm and (1 418.068 0 ± 264.953 7) μm2 in the control group. The PCNA positive cell nuclei number was 116.200 ± 5.357 in the experimental group and 53.000 ± 3.937 in the control group, showing statistically significant difference between the two groups (P lt; 0.05). At 14 and 30 day after operation, ompared with control group, the muscle fiber in the experimental group arrangedly more regularly and had lessatrophy fiber and the connective tissue proliferation. Conclusion bFGF can stimulate the proliferation of muscle satell ite cells in denervated gastrocnemius, delay the muscle fiber atrophy and inhibit connective tissues proliferation in muscle fibers.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • NEUROMUSCULAR PEDICLE TRANSPLANTATION FOR PREVENTION OF ATROPHY IN DENERVATED MUSCLE

    Objective To investigate the effect of the neuromuscular pedicle transplantation in prevention against atrophy in the denervated muscle. Methods Fortyeight SD rats were used to establish the right side tibialis anterior muscle denervation model. The long peroneal muscle neuromuscular pedicle was made as a treatment in 12 rats (Group A); the nerve shaft embedding was used in 12 rats (Group B); no treatment was used in 12 rats(Group C); the remaining 12 rats were used as normal controls (Group D). The gait analysis, electromyogram,muscle wet weight, and muscle fiber crosssectional area were used to determine and compare the effect of the operation at 6 and 12 weeks postoperatively. ResultsAt 6 weeks postoperatively, the parameters tested in Group A about the gait analysis (peroneal function index, PFI, -47.20±12.30), electromyogram, muscle wet weight (0.384 0±0.024 6 g)and muscle fiber cross-sectional area (1 040.98±120.54 μm2) were significantly better than those in Group C (PFI, -114.40±14.84; muscle wet weight, 0.173 0±0.019 1 g; muscle fiber cross-sectional area, 585.08±182.93 μm2,Plt;0.05), and the final two parameters were significantly better than those in Group B (0.294 0±0.056 4 g,763.92±82.68 μm2,Plt;0.05). At 12 weeks postoperatively, the musclefiber crosssectional area in Group A(1 360.10±261.45 μm2) had no significant difference from that in Group D (1 544.57±266.92 μm2,Pgt;0.05),and most of the parameters tested in Group A were better than those in Groups B and C. Conclusion Neuromuscular pedicle transplantation has an excellent effect in prevention against atrophy in the denervated muscle, and the effect of neuromuscular pedicle transplantation is better than that of the nerve shaft embedding.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • INHIBITOR OF NITRIC OXIDE SYNTHASE ON THE DENERVATED MUSCLE ATROPHY

    Objective To study the effect of the competitive inhibitor of nitric oxide synthase NG-nitro-L-arginine methyl ester (LNAME) on thedenervated muscle atrophy. Methods A model of the denervated gastrocnemius atthe right lower limb was established in 36 SD adult rats. The rats were randomly divided into two groups: the L-NAMEgroup (Group A) and the control group(Group B). L-NAME 10 mg/ kg daily was injected into the denervated gastrocnemius inGroup A, and normal saline was injected into the denervated gastrocnemius in Group B. At 2, 4 and 8 weeks after operation, the rate of the muscle wet weight preservation, the cross section area of the myocyte, the protein amount, and the percentage of the apoptotic muscle cells were measured respectively and the ultramicrostructure of the myocyte was observed. Results At 2 and 4 weeks after operation, the rate of the muscle wet weight preservation, the cross section area of themyocyte, and the protein amount were significantly greater in Group A than in Group B; however, the percentage of the apoptotic muscle cells was significantly smaller in Group A than in Group B. The observation of the ultramicrostructure of themyocyte showed that an injection of L-NAME could protect the ultramicrostructure of themyocyte. At 8 weeks after operation, there was no significant difference between the two groups in the abovementioned parameters. Conclusion The nitric oxide synthase inhibition can delay the denervated muscle atrophy.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • Retrospective Analysis of 97 Patients with Myotonic Dystrophy

    Objective To study the clinical characteristics of myotonic dystrophy. Method Patient records in West China Hospital, Sichuan University and China Biological Medicine Database (CBM-disc 1980-1999) were searched. Demographic data, clinical manifestations, laboratory findings of patients with myotonic dystrophy were analyzed. Results Of the total 97 patients, 64 cases were male, and 33 were female. Mean age was 28.5 years old. Ninety percent of patients had a family history. The frequency of symptoms in turn was myotonia (99%), muscle weakness (97%), muscle atrophy (85%), cataract (63%), hair losing or bald (57%) and gonadal atrophy (37%), sexuality disfunction (33%), heart damage (11%), intelligence impairment (11%), hypothyroid or disfunction of adrenal gland (8%), mental state disorders (8%). Conclusions In this group of patients, myotonia, muscle weakness and muscle atrophy were most common symptoms. In addition, some other systemic symptoms were common, such as cataract, hair losing, bald and gonadal atrophy. The clinical manifestations of myotonic dystrophy were complex.

    Release date:2016-09-07 02:27 Export PDF Favorites Scan
  • EFFECT OF PASSIVE MOVEMENT ON EXPRESSION OF miRNA-1 AND DIFFERENTIATION OF MYOBLASTS IN DENERVATION-INDUCED SKELETAL MUSCLE ATROPHY IN RATS

    ObjectiveTo investigate the expression of miRNA-1 in denervated skeletal muscle at different periods, and to explore effects of passive movement on the expression of miRNA-1 and differentiation of myoblasts in denervation-induced skeletal muscle atrophy in rats. MethodsTwenty-seven Sprague Dawley rats, weighing (200±10) g, were randomly divided into sham-operated group (group A, n=3), denervated group (group B, n=12), and passive movement group (group C, n=12). After the right sciatic nerve was exposed and dissociated, the sciatic nerve of 1 cm in length was removed in groups B and C; resection was not performed in group A. At 1 day after operation, passive flexion and extension movement was performed on the right hind limb in group C. At 6 hours in group A and at 3, 7, 14, and 28 days in groups B and C, 3 rats were sacrificed to measure the wet weight ratio of gastrocnemius muscle, to observe the diameter of the gastrocnemius muscle cell and evaluate the muscle atrophy by HE staining; RT-PCR was used to detect the mRNA expression of miRNA-1 and myocyte differentiation factor (MyoD), and immunohistochemistry to determine the protein expression of MyoD. ResultsAtrophy in various degrees was observed in denervated gastrocnemius muscle of groups B and C. The muscle fiber arranged in disorder and the diameter of the muscle cells decreased gradually with the time, without normal structure and morphology. The wet weight ratio and the cell diameter of the gastrocnemius in groups B and C were significantly less than those in group A (P<0.05); the wet weight ratio at 7, 14, 28 days and the cell diameter at 7, 14 days of group B were significantly greater than those of group A (P<0.05). The expressions of miRNA-1 and MyoD mRNA gradually increased with time in groups B and C, but were significantly less than those of group A at each time point (P<0.05). At 7, 14, and 28 days after operation, the expressions of miRNA-1 and MyoD mRNA in group C were significantly higher than those in group B (P<0.05). Immunohistochemical staining showed positive expression of MyoD in groups A, B, and C at each time point, but higher expression was observed in groups B and C than group A; the expression increased with time in groups B and C, and it was significantly higher in group C than group B. The correlation analysis results showed that the overall change trend of miRNA-1 and MyoD had no relation with the gastrocnemius wet weight ratio at 3 and 7 days (P>0.05), and had positive correlation at 14 and 28 days (P<0.05); positive correlation was found between the relative expression of MyoD and miRNA-1 mRNA (P<0.05). ConclusionPassive movement can prevent amyotrophy by increasing the expression of miRNA-1 and promoting the differentiation of myoblasts.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content